Nonlinear dynamics of active particles

Rahil Valani Leverhulme-Peierls Fellow University of Oxford

Nonlinear dynamics of active particles

>Active particles and active matter

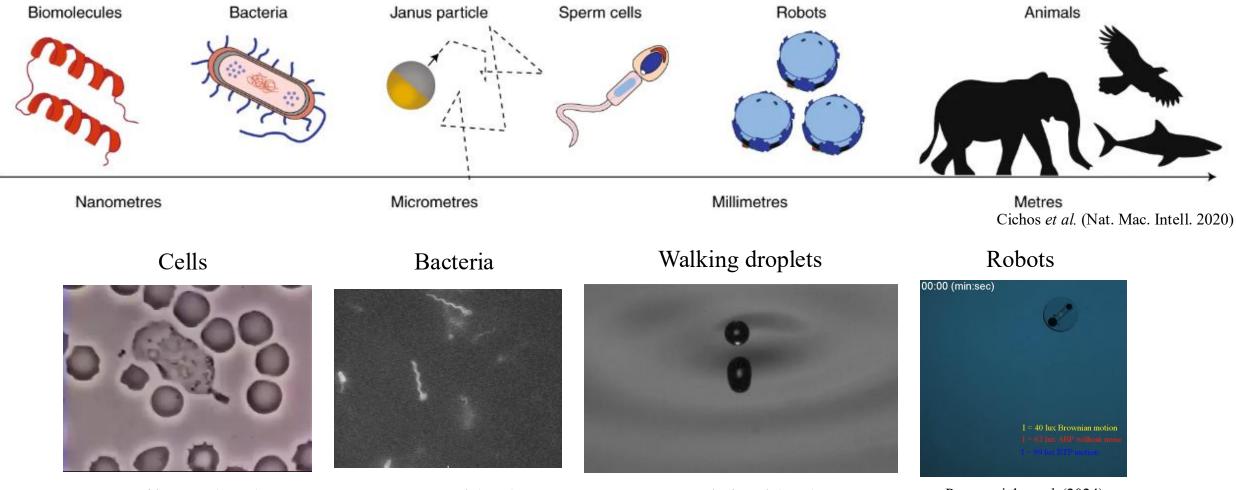
➢Nonlinear dynamical systems

► Nonlinear dynamics of active particles

Example 1: Active particle in channel flowsExample 2: Superwalking droplets

Active particle

• Entity that consume energy and convert it into persistent motion



David Rogers (1950s)

Turner *et al.* (2000)

Valani et al. (2019)

Paramanick et al. (2024)

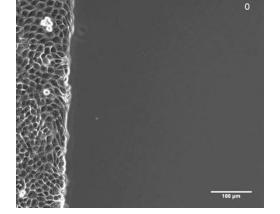
Active matter

- Matter composed of large number of active particles
- Emergent non-equilibrium behaviors
 - "More is different" (P. Anderson, Science 1972)

Murmuration of birds

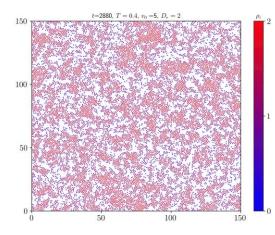
Credit: YouTube

Collective cell migration



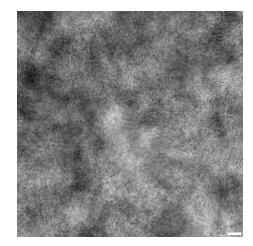
Matsuzawa et al. (Cell Rep. 2018)

Motility induced phase separation (MIPS)



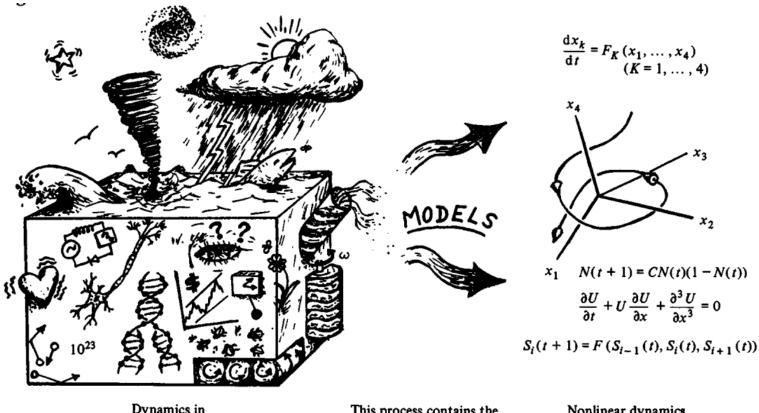
Credit: Gianmarco Spera

Active turbulence



Peng et al. (Sci Adv. 2021)

Nonlinear dynamical systems



 $\mathbf{x} = (x_1, x_2, ..., x_N)$ $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$

nonlinear functions $\dot{x}_1 = f_1(x_1, \dots, x_N)$ $\dot{x}_2 = f_2(x_1, \dots, x_N)$ $\dot{x}_N = f_N(x_1, ..., x_N).$ $\mathbf{x}(t)$ $\mathbf{x}(0)$ $\succ x_1$ x_N

Dynamics in the real world

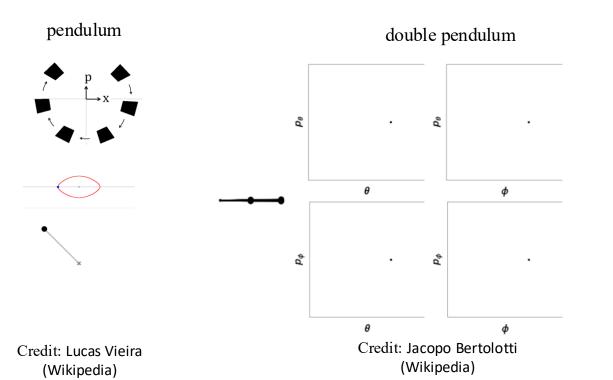
This process contains the physical insight ('artistry') of the theorist in attempting to describe real phenomena Nonlinear dynamics in the phase space of the physical variables

Jackson EA. Perspectives of Nonlinear Dynamics 1. (Cambridge University Press 1990)

Conservative & dissipative dynamical systems

Conservative systems

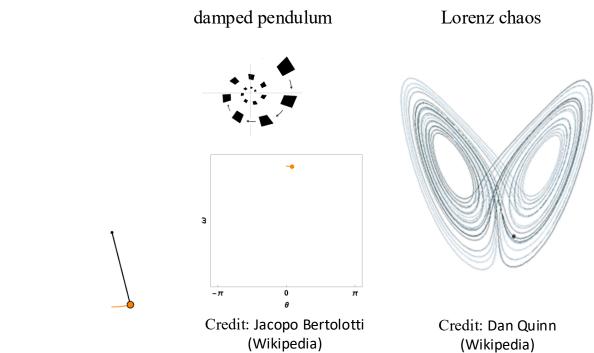
- Phase-space volume conserved
- Nonlinear systems can exhibit conservative chaos e.g. double pendulum or 3-body problem



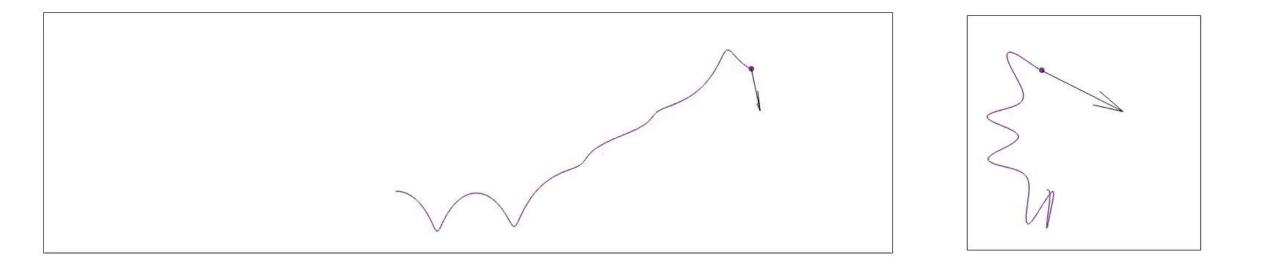
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$

Dissipative systems

- Phase-space volume shrinks
- Nonlinear systems can exhibit dissipative chaos e.g. Lorenz system

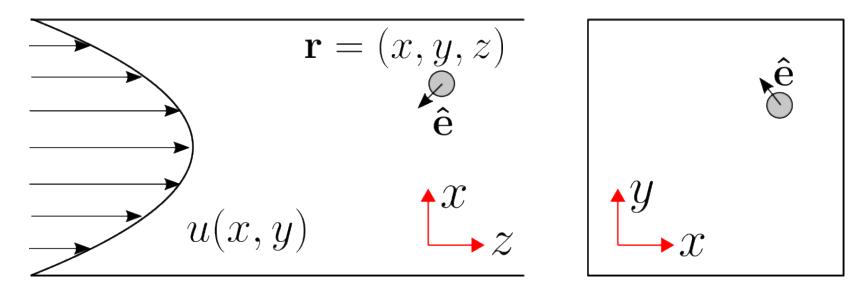


Example 1: Active particles in unidirectional flows

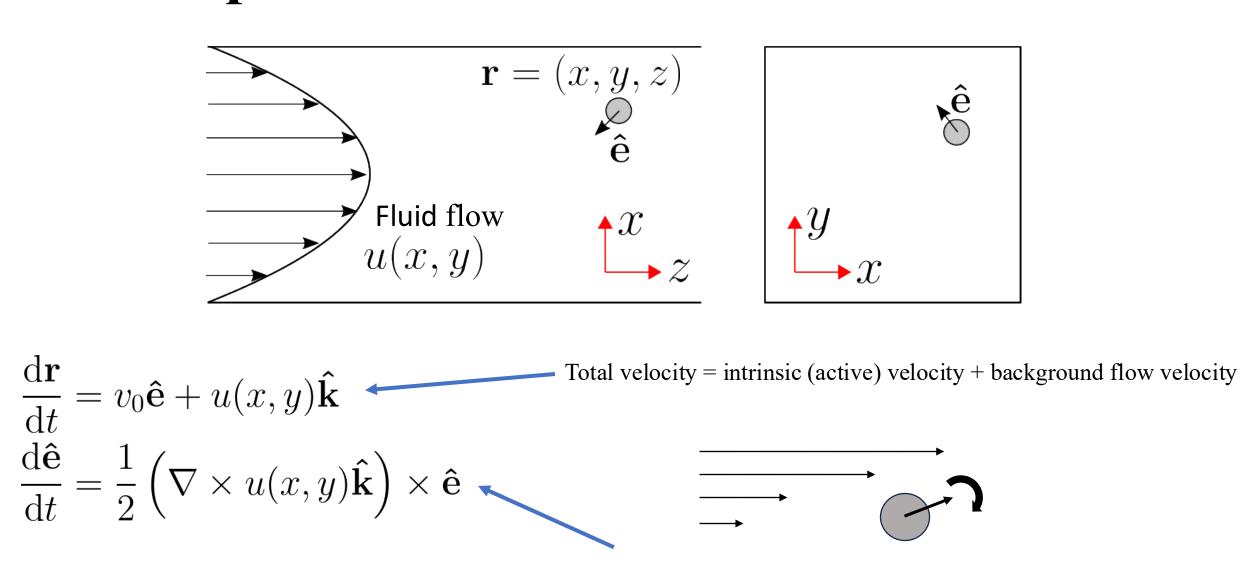


Active particles in unidirectional flows

- Microswimmer active particle immersed in a fluid medium at the microscale e.g. bacteria, motile cell, microrobot
- Microswimmers experience unidirectional fluid flows in confined environments e.g. sperm cells in fallopian tubes, microrobots for targeted drug delivery applications, pathogens in bloodstream

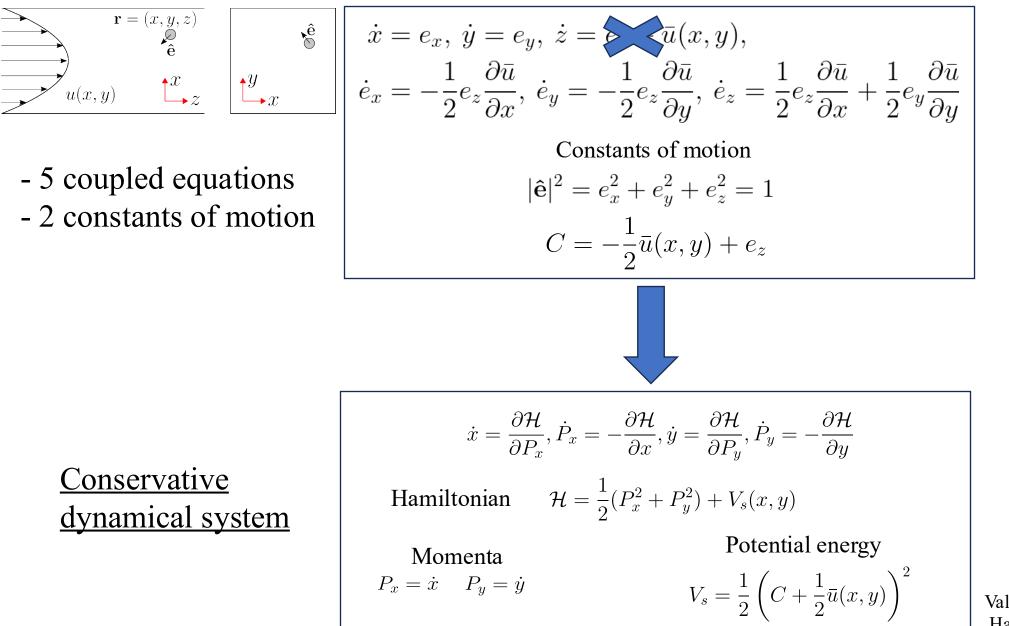


Active particle motion in unidirectional flow



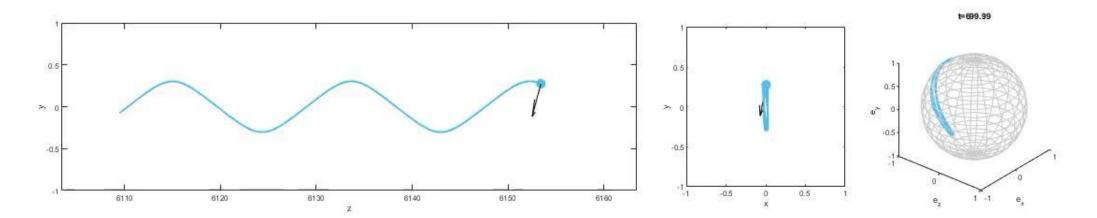
Particle orientation rotates due to local vorticity of fluid

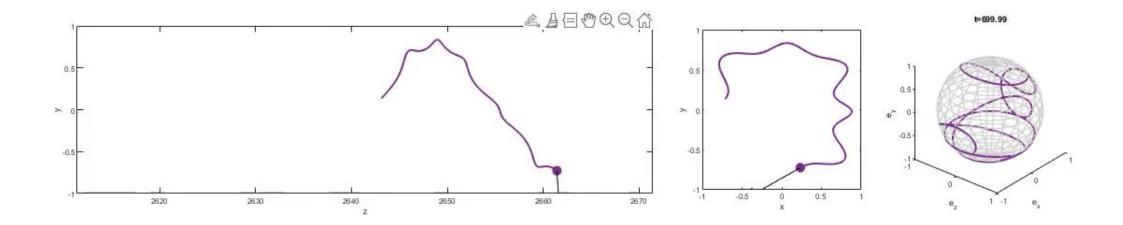
Active particle motion in unidirectional flow



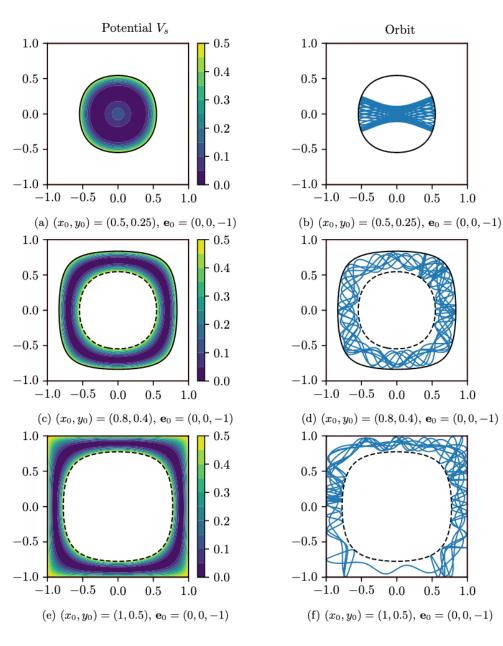
Valani, Harding & Stokes (2024 PRE) Harding, Valani & Stokes (*in prep.*)

Active particle trajectories in 3D channel with square cross-section





Active particle trajectories in rectangular channels

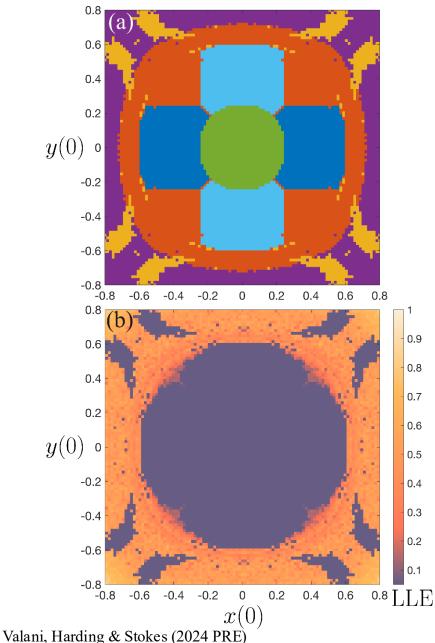


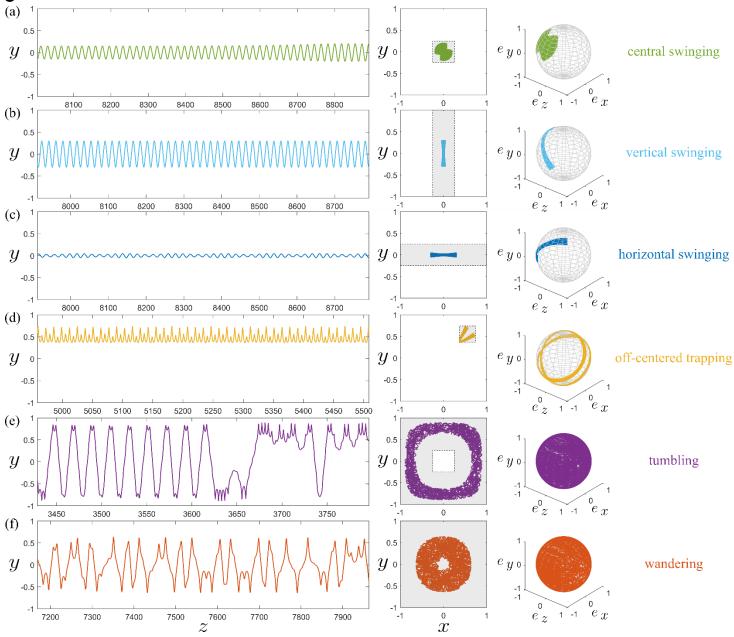
$$C = -\frac{1}{2}\bar{u}(x,y) + e_z$$

Potential energy $V_s = \frac{1}{2} \left(C + \frac{1}{2} \bar{u}(x, y) \right)^2$

Harding, Valani & Stokes (in prep.)

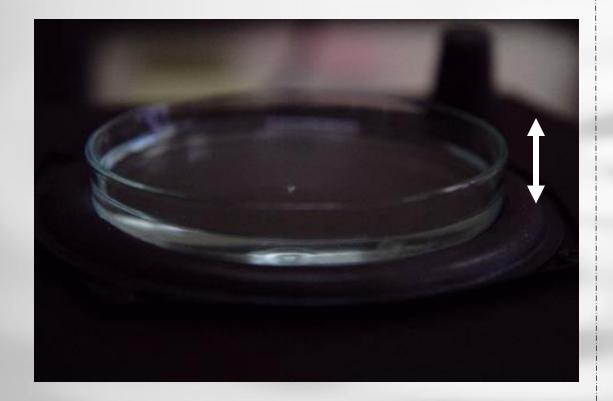
Sensitivity to initial conditions





Example 2: Superwalking droplets

Flat surface

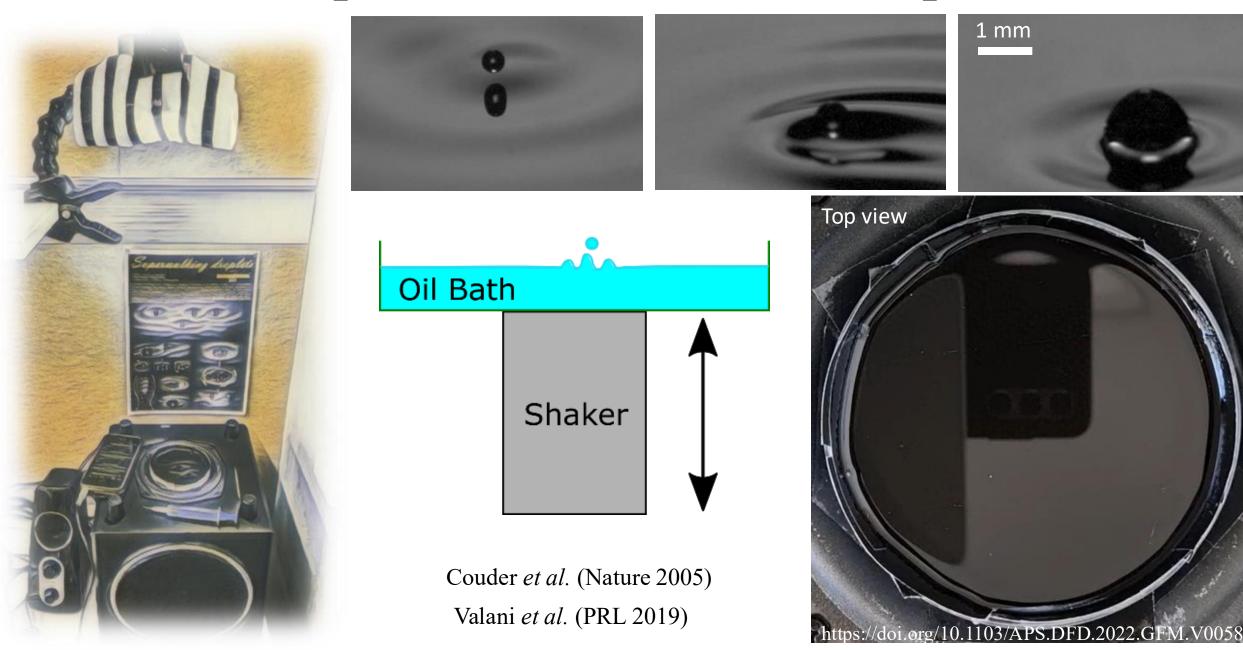


Faraday standing waves

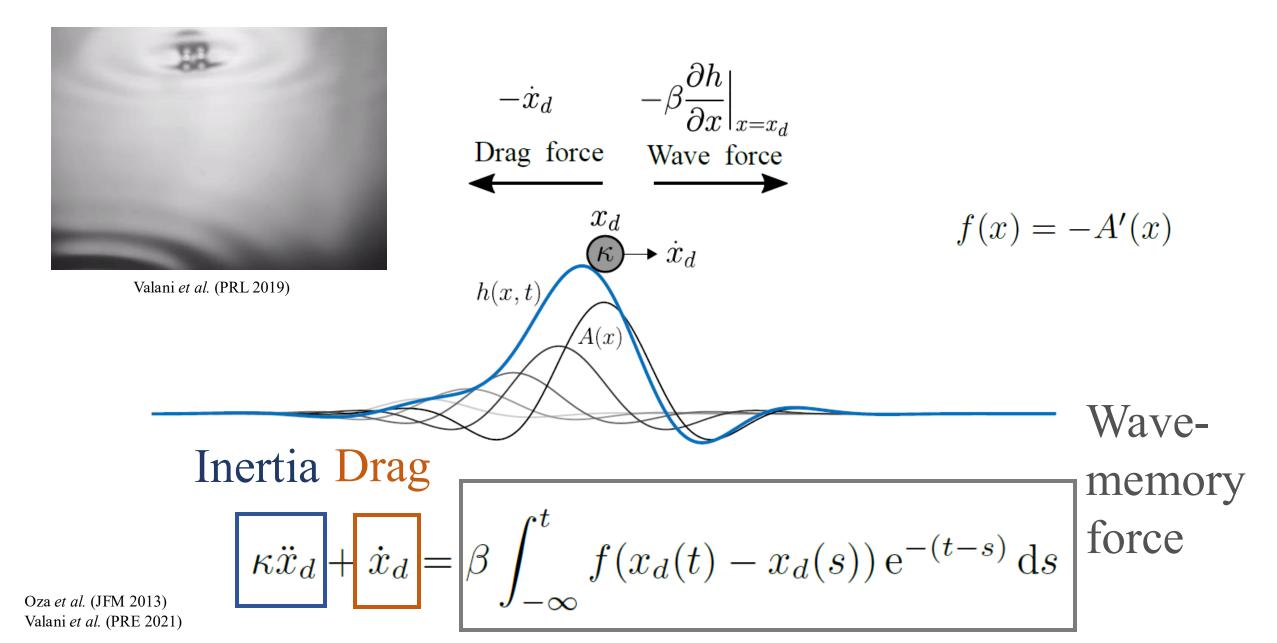
Increasing driving amplitude

Faraday threshold

Walkers & Superwalkers – active wave-particle entities



Stroboscopic model for the active wave-particle entity



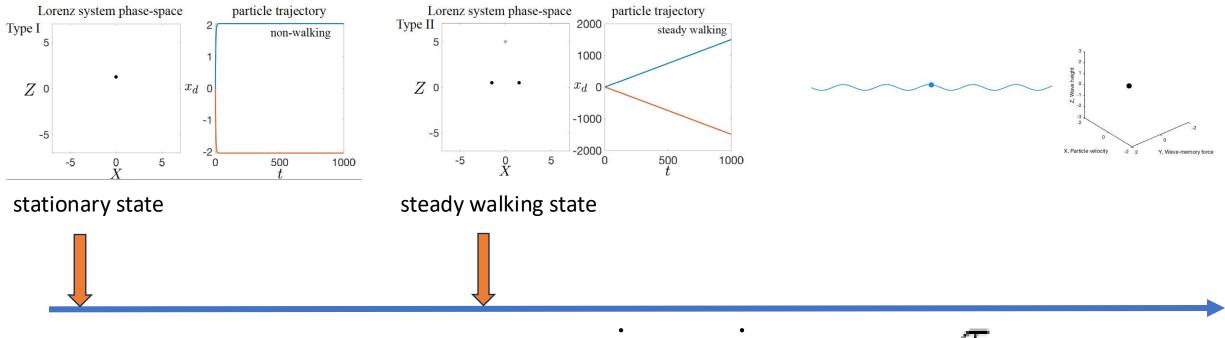
Connection to Lorenz equations

Dynamics with increasing memory

$$\dot{X} = Y - X$$

 $\dot{Y} = -\frac{Y}{\tau} + XZ$
 $\dot{Z} = R - \frac{Z}{\tau} - XY$

R = dimensionless wave-amplitude $\tau =$ dimensionless wave-decay rate



increasing memory au

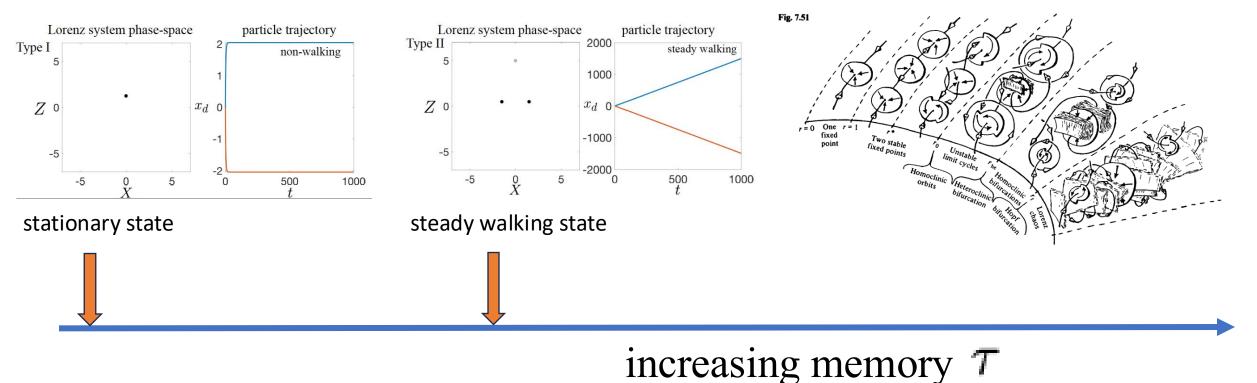
Dynamics with increasing memory

$$\dot{X} = Y - X$$
$$\dot{Y} = -\frac{Y}{\tau} + XZ$$
$$\dot{Z} = R - \frac{Z}{\tau} - XY$$

 $R={\rm dimensionless}$ wave-amplitude

 $\tau = \text{dimensionless wave-decay rate}$

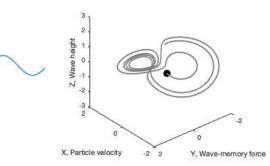
Jackson EA. Perspectives of Nonlinear Dynamics 2. (Cambridge University Press 1990)

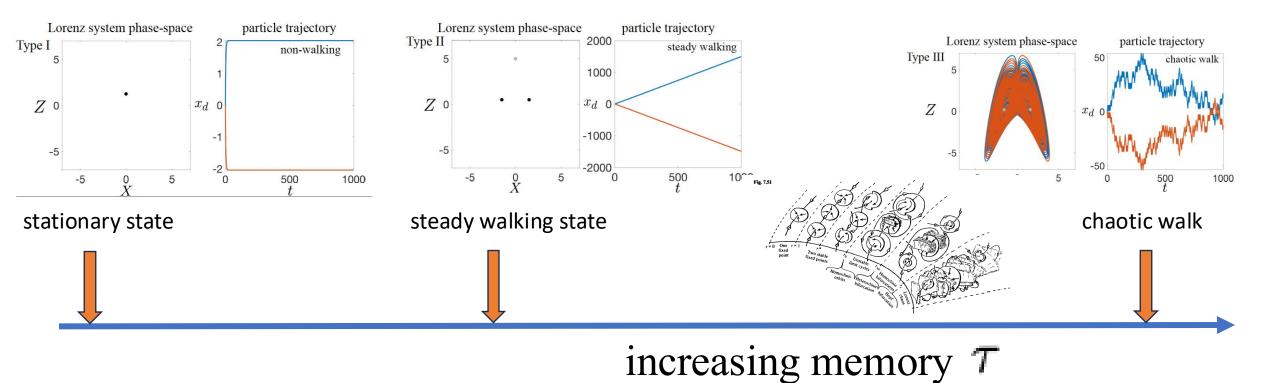


Dynamics with increasing memory

$$\begin{split} \dot{X} &= Y - X \\ \dot{Y} &= -\frac{Y}{\tau} + XZ \\ \dot{Z} &= R - \frac{Z}{\tau} - XY \end{split}$$

R = dimensionless wave-amplitude $\tau = \text{dimensionless wave-decay rate}$

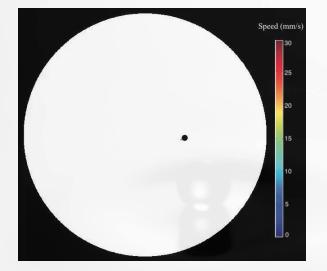


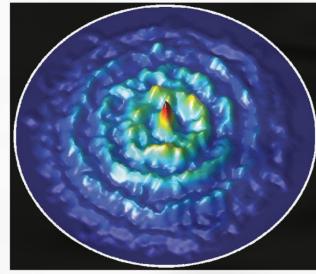


Interaction of multiple superwalkers results in novel dynamics

Hydrodynamic Quantum Analogs

Wave-like statistics in confined geometries

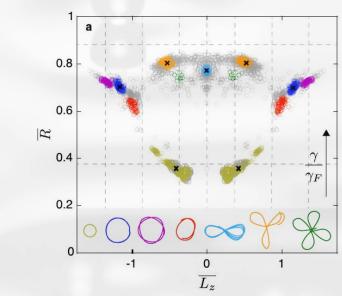




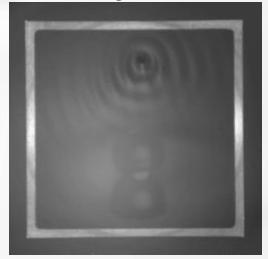
Harris et al. (PRE 2013)

Diffraction & Interference

Couder *et al*. (PRL 2006), Pucci *et al*. (JFM 2013)



Tunnelling across submerged barriers



Eddie et al. (PRL 2009)

Quantisation in droplet's dynamics

Perrard *et al.* (Nature 2014), Cristea-Platon *et al.* (Chaos 2018)

Summary

• Active particles are non-equilibrium entities that consume energy and convert it to directed motion

- Many interacting active particles result in the emergence of nonequilibrium phases e.g. flocking, active turbulence
- Simple models of active particles can result in nonlinear dynamical systems that exhibit rich complexity of regular and chaotic behaviours
- These dynamical behaviours can be rationalized in terms of conservative and dissipative dynamical systems

Thank you!

Website: rahilvalani.com

Contact: rahil.valani@physics.ox.ac.uk