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1 Syllabus Overview, Stars Activity, Formation of the
Solar System, Orbit Primer
Hi all! Welcome to ASTR 635. For our first class meeting, our agenda is the following:

1. Review the course format and structure (15 min)
2. Stars group activity (30 min)
3. Formation of the Solar System: brief recap and group activity (30 min)

I will make an agenda and notes handout for each class, listing the plans for the
day as well as providing some further information that you can use for studying. These
notes will not necessarily be comprehensive, and will instead be a summary of what
is presented in class (sometimes it’ll be the opposite, and they’ll contain more infor-
mation than we end up covering). I recommend both taking notes in class and taking
notes from the assigned reading for each day. Note that the agenda is always tentative,
and I will strive to go at the pace the class would like to rather than rushing through material.

For all future classes, there will be a corresponding reading and an ELMS assignment in
which you must submit a question about the reading by 9 am on the day that class takes
place. I will use the questions to better orient each lecture to the material that would be
most impactful to our learning, and to answer specific thoughtful questions from each of you.

1.1 Course Overview

This course will provide an introduction to the current astrophysical study of exoplanets
at the level to prepare undergraduate students to get involved in current research in the
field. This course will survey the broad range of exoplanet science, and as such will be split
into 3 parts with a coda:

1. Exoplanet detection methods (lectures 1-8).
2. Exoplanet demographics and planet formation (lectures 9-15)
3. Exoplanet atmospheres, interiors, and observational characterization (lectures 16-23).

Each part will end with a midterm exam — there will be no final exam. Instead, the final
exam slot will consist of presentations as part of a final project, in which you will conduct
novel research in the exoplanet field.

As discussed above, please do the assigned reading (see Table 1 in the Syllabus for
assignments) before class and post a thoughtful question on the ELMS assignment for that
day by 9 am. Class will include regular activities, usually focused on group problem solving
to apply the knowledge we learn from each day’s lecture. There will be three problem
sets and three group mini-projects, one for each segment in the course triad. The grade
distribution of the class is as follows:

Mid-term 1: 10%, Mid-term 2: 10%, Mid-term 3: 10%.

Problem sets: 15%.



Group mini-projects: 30%.

In-class participation: 5%. The lowest in-class assignment will be dropped.

Pre-class reading questions: 5%. The lowest pre-class assignment will be dropped.

Final project: 15%. The written component will comprise 2/3 of the project grade,
and the oral presentation will comprise 1/3 of the project grade.

1.2 Stellar physics and radiation fundamentals activity

Exoplanet science relies on stellar physics, famously stated as “know thy star, know
thy planet.” Let’s do a group activity both to get used to interacting in small groups in
the classroom and to refresh our memory of fundamental stellar radiation. I'll distribute
markers and tabletop whiteboards for ya’ll to solve these problems on in groups of 2-3!

1. Consider a nearby M-dwarf star with an effective temperature of 2557 K, radius of
0.1234 Solar radii, and parallax of 0.0802 arcseconds.

(a) What is the spectral class of this star? Be as specific as possible.

(b) What is the bolometric luminosity of this star, in Solar luminosities (i.e., L/Lg)?
Note that Rg = 6.96 x 10° m, Ly = 3.83 x 10%® W, and T,z = 5777 K. The
Stefan-Boltzmann constant is 5.67 x 107 W m~2 K.

(c) How far away is this star from Earth, in parsecs?

(d) At what wavelength does the blackbody spectrum of this star have its maximum?
Note that for the Sun, Ay.c = 0.502 pm.

(e) This star has seven nearly Earth-sized planets around it that were discovered in
2016 and 2017. What exoplanet system is this?

(f) Planet e in this system has a semi-major axis of 0.0293 au. Estimate the radiative
equilibrium temperature of this planet, in Kelvin.

(g) If you wanted to observe the thermal emission of planet e, approximately what
wavelength would you observe in? If you wanted to observe the transmission
of light from the host star through the limb of planet e, at what approximate
wavelength would you observe in? What current observational facilities might be
suitable for each of these observations?

1.3 Formation of the Solar System recap

Our Milky Way Galaxy is teeming with planets. To date, astronomers have discovered
5,569 exoplanets (see Figure 1.1, value updated as of Jan. 12). These planets present an
opportunity to understand how planetary systems form, determine whether our Solar System
is special, and better understand the physics and chemistry that sets the present day state of
planetary interiors, atmospheres, and surfaces. Over the next few weeks, we will first study
the various methods by which exoplanets can be detected — each shown by the different colors
in Figure 1.1. In today’s class, we will briefly recap the current picture for how planetary
systems (including our Solar System) form before studying each detection method in more
detail.
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Figure 1.1: The exoplanet census as of January 2024. We’ll get to all those detection
methods (shown by the different colored points) in the next seven lectures.
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Figure 1.2: Artist’s illustration of formation of a protoplanetary disk and nascent Solar
System through collapse of a molecular cloud. Literally from my ASTR 100 slides.

Planetary systems form due to the gravitational collapse of molecular cloud cores, through
a step-wise process illustrated in Figure 1.2. This process begins when the molecular cloud
becomes dense enough that it reaches a critical density (which can also be re-framed as a



mass or radius, often termed the Jeans mass or Jeans length) such that the internal thermal
energy (i.e., gas pressure) is less than the gravitational potential energy and thus the cloud
cannot remain in a state of hydrostatic equilibrium. We will derive this criterion when
we cover planet formation in the second part of this course, but the Jeans mass can be
approximated by (Carroll & Ostlie, 2017)

3/2 1/2
My~ (KT S\ (1.1)
Gumpyg 47 po

In Equation (1.1), k is the Boltzmann constant, 7" is temperature, G is the gravitational
constant, u is the mean molecular weight (u ~ 2.3 for a cold H/He mixture at Solar compo-
sition), my is the mass of hydrogen, and py is the density of the cloud. The Jeans lengths
of approximately Solar-mass clouds are on the order of tens of thousands of astronomical
units, and we’ll use this in our group activity.

As described in Figure 1.2, clouds spin up and flatten into disks as they collapse due
to angular momentum conservation. Angular momentum conservation also implies that
all of the planets should have the same sense of orbital revolution, that this should be
the same direction as the Sun’s rotation around its axis, and that the planets should
further rotate around their own axes in the same direction. Figure 1.3 shows a diagram
of the rotational and orbital spin vectors for each object in the Solar System. Indeed, as

© 2010 Pearson Education, Inc.

Figure 1.3: Diagram of Solar System (not to scale) showing rotational and orbital spin
vectors for each object.

we expect from conservation of angular momentum the revolution of all planets around
the Sun is all in the same direction (counter-clockwise), which is the same direction
the Sun is rotating on its axis. This is also the same direction as the rotation of most
planets around their axes, though the “obliquity,” or tilt of many planets with respect
to their orbital plane around the Sun differs drastically (with Mercury having an oblig-
uity of 0.034° and Uranus famous for being on its side, with an obliquity of 97.8°, see
https://nssdc.gsfc.nasa.gov/planetary/factsheet/). However, Uranus and Venus
(obliquity of 177.4°) both have obliquities that lie between 90° and 180° — this means that

4
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their direction of rotation is actually opposite to their direction of orbital motion. This is
not expected from conservation of angular momentum, and the root cause of the present-day
obliquities of both Venus and Uranus is still an active area of research.

1.3.1 Formation of the Solar System activity

This group activity will provide you with some intuition for the partitioning of angular
momentum in the present day Solar System, which is linked to that of its birth environment.
We'll again use the portable white boards for this! Please get together in groups of 2-3.

Angular momentum in the Solar System is not equitably partitioned between our Sun
and the planets. This has strong consequences for our understanding of the formation of our
Solar System. The following questions will walk you though this.

1. Calculate the rotational angular momentum of the Sun, assuming it is a uniform density
sphere (...this is not the case, but we just need order of magnitude accuracy). Note that
the radius of the Sun Ry = 6.96 x 10% m, the mass of the Sun My = 1.989 x 10%° kg,
and the rotation period of the Sun Py = 24.5 days.

2. Calculate the orbital angular momentum of Jupiter. First, write down or derive the
orbital velocity of an object around the Sun as a function of the mass of the Sun My,
gravitational constant (G, and semi-major axis a. Then use the traditional formula
for angular momentum to write an expression for the angular momentum of Jupiter’s
orbit around the Sun. Then plug in, using Mjy,, = 1.898 x 10?" kg, aj,, = 5.204 au.

3. (If time remains) Calculate the rotational angular momentum of a Solar-mass molecular
cloud with a temperature of 10 K at the Jeans mass (we’ll get to that later, for now I'll
give you the relevant values). This cloud has a radius of ~ 16,500 au, and an angular
velocity of 0.03 km s™! pc™! (1 pc = 3.086 x 103 km). As for the Sun, you can assume
it’s a uniform density sphere.

4. There are stark decreases in the amount of angular momentum from the molecular
cloud, to the orbits of the planets, and further to the rotation of the Sun. Discuss with
your peers where all of this angular momentum might have went, and what processes
may have led to this “lost” angular momentum.

1.4 Elliptical orbits primer

Ch. 2 of the Exoplanet Handbook textbook and Ch. 1 of the Tremaine Dynamics of
Planetary Systems textbook cover elliptical orbits in 3D, and this will be on your Problem
Set 1. This section is a quick recap of the salient points that you can refer to for this class.
We'll cover this in class if time permits and/or if people want me to (please tell me if you
haven’t seen this before), otherwise you’ll cover it on your own in a fair bit of detail driving
the radial velocity shift caused by a planet on an eccentric orbit in Problem Set 1.

Figure 1.4 shows the geometry of a 3D orbit in another planetary system, with the
observer looking at the system from the top-down. The orbital plane can be defined with
respect to an arbitrary reference plane — for exoplanet systems, we define the orbital plane
with respect to the plane of the sky that is perpendicular to the direction toward the observer.
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Figure 1.4: Geometry of a 3D orbit. Terms and variables are defined in the text and in
Problem Set 1, Question 3. Figure courtesy Prof. Eliza Kempton.

Note that for the Solar System itself, the reference plane is usually different, instead often
set to be the ecliptic (Earth’s orbital plane about the Sun).

The primary orbital elements are the eccentricity e, the semi-major axis a, and the
inclination 7. The semi-major axis a is half of the long axis of the ellipse. The eccentricity
e = 4/1 —b?/a?, where b is the semi-minor axis of the ellipse (i.e., half of the short axis of
the ellipse). The inclination, 7, of an orbit is the angle between the orbital plane and the
reference plane. The inclination can range from 0° — 180°, where inclinations from 0° — 90°
correspond to prograde orbits (in the same direction as the rotation of the primary) while
inclinations from 90° — 180° correspond to retrograde orbits (opposite to the rotation of
the primary). The line of nodes is the intersection between the orbital and reference plane,
and the point in the orbit where the planet passes upwards through the line of nodes is the
ascending node while the point where the planet passes downwards is the descending node.
The angle from a fixed zero point in the orbit to the ascending node is called the longitude
of the ascending node, often denoted by €.

There are two other important angular orbital elements. The first is the angle between
the line to the ascending node and the line toward periapsis, which is termed the argument
of periapsis (w). The second is the true anomaly, 0(¢) in Figure 1.4 (v(¢) in the Exoplanet
Handbook textbook), which is the angle between the periapsis and the planet’s actual time-
dependent position as it orbits. Putting these together, we have six orbital elements that
specify the location of a planet in its orbit: a,e,7,Q,w,f0. In practice, astronomers often
specify the location of the planet along its orbit using the mean motion

(1.2)



where P is the orbital period, and the mean longitude (related to the mean anomaly)
A=n(t—t,)+Q+w=n(t—-1t,)+w, (1.3)

where ¢, is the time of pericenter passage and w = 2 + w.
The planet-star distance at any point in its orbit can be expressed as

a(l —e?)

"Tive cosf(t) ’ (14)

which is Kepler’s first law. Further, note that Kepler’s second law (equal areas in equal time,

where A = ma®y/1 — e2) states

dA  r?df
i constant. (1.5)
However, often the eccentric anomaly FE(t) is used rather than the true anomaly 6(¢) to
specify the location of the planet along its orbit. The eccentric anomaly is the angle inscribed
within an auxiliary circle of the orbital ellipse (i.e., the circle that would be made if you take
the radius of the circle to be the semi-major axis of the ellipse, see textbook Fig. 2.1). The
true and eccentric anomalies are related as

cosE(t) — e
0t) = ——————. 1.6
cos(t) 1 — ecosE(t) (16)
Further, the mean anomaly
Mit)=n(t—t,) = A—w (1.7)
is related to the eccentric anomaly by Kepler’s equation
M(t) = E(t) — e sinE(t). (1.8)

To practically calculate the position of a planet in its orbit, one can calculate the mean
anomaly with Equation (1.7), then solve for the eccentric anomaly iteratively using Equa-
tion (1.8), and finally use Equation (1.6) to determine the true anomaly.



2 Detecting exoplanets: radial velocity
Our agenda for Day 2 is the following:
1. Review the concept of the Doppler shift (5 min)

2. One-slide intro to the radial velocity method (5 min)
Group activity: derive the radial velocity equation for circular orbits (20 min)

Learn in practice how astronomers detect planets via radial velocity (25 min)

AT

Group activity: Calculate the radial velocity semi-amplitude due to Earth and Jupiter
around the Sun and compare to current astronomical capabilities (20 min)

Today’s reading is from our textbook, Ch. 2.1-2.4, Ch. 2.6-2.7 and/or from the Lovis &
Fischer handout (which is from the Exoplanets book edited by S. Seager). These readings
will cover the fundamentals of orbits (which we’ll start discussing this class and build upon
in following classes), the principles of radial velocity measurements, modern radial velocity
instruments, and some current results for radial velocity observations.

2.1 Radial velocity: notes
2.1.1 Doppler shift

The standard way to measure motion along the line of sight in astronomy is by leveraging
the change in the apparent wavelength of emitted light due to this motion. A change in the
apparent wavelength due to motion along the line of sight is a fundamental property of waves
(both transverse and longitudinal, covering light and sound alike), and this shift is termed
the Doppler shift. Astronomers use the Doppler shift of stars induced by unseen planets to
infer the presence of exoplanets via the “radial velocity” method.

For the purposes of measuring radial velocity of a star, we’ll express the Doppler shift
as a difference in the wavelength of a spectral line observed from the star relative to the
wavelength of a spectral line emitted from that star, i.e., A\ = Agps — Arest, Where Agps is the
observed wavelength of the spectral line and A, is the wavelength at which that spectral
line would lie if it were emitted at rest (i.e., in a laboratory).

The full (relativistic) Doppler shift is

1+ %cost
>\obs = )\rest;7 (21)

o\ 2
1= (%)
where v is the magnitude of velocity, ¢ is the speed of light, and 6 is the angle of motion

relative to the line between the observer and star. For the purposes of detecting exoplanets,
we can ignore relativistic effects (v/c « 1), which reduces the equation to

Aobs = Arest (1 + E(308(9) . (2.2)
c
Rearranging, we can write the equation for radial velocity v, = vcosf as
AN
r = . 2.3
! )\rest ‘ ( )



As a result, to measure the motion of a star along the line of sight, in principle all we need
to measure is the difference in position of a spectral line compared to what it would be in
the laboratory (A\) and use Equation (2.3) to solve for v,.

2.1.2 Radial velocity equation for circular orbits

Next we need to link the observable (radial velocity) to fundamental properties of the
star-planet system. If you've ever learned the fundamental physics of binary star systems,
exoplanet detection via radial velocity is fundamentally the same as characterizing the orbits
of spectroscopic binary systems. However, unlike in binary systems where the Doppler shift
of light from each star can be measured, in exoplanet systems only the Doppler shift of the
brighter host star is detectable (in most cases — we’ll cover the utility of planetary Doppler
shifts for characterizing atmospheric circulation in a couple months). This means that the
properties of the unseen planet are determined solely by studying the apparent motion of
the host star.

To estimate the observable radial velocity shift of a star due to an unseen planet, we
need to calculate the orbital velocity of this star around the center of mass of the star-planet
system. The left-hand side of Figure 2.1 shows the geometry of this “binary” system, with
the star and planet on opposite sides of their common center of mass.

Alysa Obertas (@AstroAlysa) 10
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Figure 2.1: The geometry (left) and observables (right) of the radial velocity method.
The top-left shows the face-on view of a star-planet system, while the bottom-left shows
an edge-on view. The top right shows the resulting radial velocity curve (where, at the
moment, the star is at the yellow dot) and the bottom right shows the spectral lines (solid)
compared to their rest position (dashed). Figure from https://astrobites.org/2019/10/
16/the-nobel-winning-discovery-of-51-pegasi-b/.

To start, let us call the mutual orbital period of the planet and star P, the separation
between the planet and the center of mass of the system r,, the separation between the star
and the center of mass r,, and the velocities of the planet and star v, and v,, respectively.
Next, we can write down expressions for the velocities of the planet and star assuming


https://astrobites.org/2019/10/16/the-nobel-winning-discovery-of-51-pegasi-b/
https://astrobites.org/2019/10/16/the-nobel-winning-discovery-of-51-pegasi-b/

circular orbits:

21Ty,
’U =
tor (2.4)
27r, ’
U, = .
P

Note that real orbits aren’t always aligned with our line of sight, so there is a projection effect
that causes the maximum observed velocities to be smaller, depending on their inclination
i

Vop = Vpc08(90° — 1) = v,sin(i),

2.5
Up e = V,SIN(7). (25)
Let’s now take the ratio of v,, and v, ,:
Vop  Upsin(i)  27r, P 7, (2.6)
Vo wusin(i) P 2mr, 1. .

Along with the definition of center of mass (M,r, = M,r,), this provides a useful set of
relationships between velocity, mass, and separation for (circular) star-planet systems:
v, 1, M,

_ ' _ ) 2.7
Uy Ty M, (2.7)

2.1.3 Group activity: deriving the radial velocity semi-amplitude for circular
orbits

Recall Kepler’s 3rd law,
a? . G Moy
P2 4x2
where the total mass Mo, = M, + M,, and a is the separation between the two objects,
which can be related to their combined velocities as

(2.8)

P
azrp+r*=%(vp+v*). (2.9)

From these and the discussion above, derive the radial velocity semi-amplitude, K = v, ,,

assuming circular orbits:
P CAN M,sin(i)
Kz( Iz ) (M+M)2/3. (2.10)
* p

Note that we’ll derive the full radial velocity equation (i.e., Equation 2.27 from our
textbook) as part of our homework that will be assigned next class. However, it’s not too
different from what we derived in class, just with an extra factor of (1 — )~/

P (QWG)I/?) M,sin(i) 1 (2.11)
P (M, + M,)** V1 —¢e? '
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2.1.4 Detecting planets via radial velocity in practice

The radial velocity method was used to find the first exoplanet around a Sun-like star,
51 Pegasi b, by Mayor & Queloz in 1995 (Mayor & Queloz, 1995). Figure 2.2 shows their
observed radial velocity curve from observations at Observatoire de Haute-Provence with
the ELODIE spectrograph, covering 0.389 pm — 0.6815 pum with a radial velocity precision
of ~ 7 m s7'. Using Equation (2.3), we can infer that this 7 m s™! precision equates to a

Figure 2.2: Radial velocity curve of 51
Pegasi b, the first exoplanet found via
the radial velocity method. The x-axis is
orbital phase (this is phase-folded data),
and the y-axis is the radial velocity in
m/s.

precision of AX ~ 1.5 x 107® nm given a spectral line rest wavelength of 656.279 nm for
the H-a line (note that in practice, radial velocity observations use many lines to calculate
the Doppler shift). These and follow-up observations have measured the orbital period of 51
Pegasi b to be 4.23 days and the minimum mass of the planet to be 0.468 Mjyy,.

Note that the radial velocity method alone does not allow a mass to be measured
directly, it only places a lower limit on the mass. This is because M, and sin(i) are
degenerate in Equation (2.11), only the combination is measured directly. In order to break
this degeneracy, the inclination must be inferred through other means. The easiest way to
break this is if the planet is also transiting (which allows i to be directly measured), which
in turn infers one to measure the mass and radius directly and thus measure the density.
We’ll discuss this further next week.

Radial velocity measurements require very high spectral resolution R = A\/AX ~ 10°
— measuring these small wavelength shifts requires an instrument that measures the higher
diffraction orders. The type of instrument regularly used for radial velocity instruments is an
echelle spectrometer, which feeds light through both a low dispersion (standard) grating and
then a specialized echelle grating that separates the high diffraction orders. The main chal-
lenge of radial velocity in its infancy was the wavelength calibration — advances in wavelength
calibration using iodine gas cells led to the first radial velocity exoplanet detections. Today,
most instruments either use emission lamps (e.g., Th-Ar, U-Ne) or laser frequency combs for
wavelength calibration, in principle allowing measurements down to K ~ 0.01 m s .

However, astronomers cannot measure radial velocities down to the cm/s level at present
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— the key challenge now is mitigating the effects of the star, which can overwhelm plane-
tary signals or even masquerade as one. There are three main effects that stars have on
radial velocity measurements: 1) stellar granulation, 2) stellar oscillations, 3) stellar activity
(starspots, plages). These sum to cause a stellar impact in the radial velocity signal at the
~ 1 m s7! level or higher.

1. Stellar granulation is the surface representation of small-scale convection cells in the
envelope of a star. The radial velocity variability induced is on the order of ~ 1 m s~
However, convection is fundamentally well-understood, and there are efforts to model
stellar granulation with multi-dimensional stellar atmosphere models to remove the RV
signals.

2. Stellar oscillations are due to pressure waves (P-modes) propagating inside stars and
causing them to oscillate on a fairly regular timescale. These oscillations are on the
order of ~ 1 m s~ !, and they are studied in detail for specific stars with short-cadence
measurements through the study of asteroseismology. They are generally dealt with
by integrating over the oscillation period, which is on the order of tens of minutes.
Importantly, the oscillation period depends on stellar mass because the timescale of
oscillation scales as 7oc/p, where p is density, so lower-mass stars have longer oscillation
timescales (and thus, require longer integrations).

3. Star spots (cool regions of a star) and plages (hotter than average regions) are perhaps
the most pernicious stellar RV jitter. The amplitude of these can be up to 100 m st
for active stars. This often causes active stars to be simply left out of large-scale radial
velocity surveys, with astronomers using activity indicators (e.g., Ca II H and K lines)
to determine if stars are too active to study with RV. Additionally, stars like our Sun
undergo long-term activity cycles that correlate with the migration of starspots from
the mid-latitudes to the equator (a “Butterfly” pattern, see Figure 2.3). This means

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS
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Figure 2.3: Maunder’s butterfly plot showing the Solar activity cycle.
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that long-term radial velocity observations could see a periodic trend in the stellar
“motion” that is due to stellar activity rather than an unseen planet.

Though it may seem challenging to overwhelm the impacts of stellar activity, astronomers
can now regularly push instruments to RV precisions of < 0.3 m s™!, and the radial velocity
method has detected 1,075 planets to date (https://exoplanetarchive.ipac.caltech.
edu/docs/counts_detail.html). Figure 2.4 shows radial velocity curves of two interesting
systems, HD 80606 (Naef et al., 2001) and 55 Cancri (Fischer et al., 2008). HD 80606b is
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Figure 2.4: Radial velocity curves of HD 80606 (left) and 55 Cancri (right).

one of the most eccentric exoplanets known, with e = 0.927. Note how the high eccentricity
causes a rapid shift in the stellar RV near periapse. 55 Cancri is a system with five known
planets, and the RV curve displays this complexity — you can easily see a 14-year period from
the outer planet, but there are four other planets with periods of 2.8,14.7,44.3,260.8 days
as well. To fit these multi-planet RV curves one usually ignores the effect of planet-planet
gravitational interactions, allowing one to model the radial velocity curve of the star as the
linear superposition of the radial velocity curve of each individual planet. By subtracting
the radial velocity curves of known planets, one can then search for other periodic signals in
the RV curve using a periodogram (i.e., Lomb-Scargle) analysis and/or a more statistically
robust method (e.g., MCMC).

2.2 Radial velocity in practice: group activity

Using our simplified formula for radial velocity assuming a circular orbit (Equation 2.10),
let’s estimate the radial velocity semi-amplitude that planets in our Solar System would cause
around another Sun-like star.

1. Calculate the radial velocity semi-amplitude caused by Jupiter orbiting our Sun, as-
suming that it is viewed edge-on (i.e., i = 90°). You may use Mjy,, = 1.898 x 10?7 kg,
Pyyp = 4331 days, and Mg = 1.989 x 10%° kg.

2. Calculate the radial velocity semi-amplitude again for a Jupiter-mass planet around a
Sun-like star, but now with the orbital period of 51 Pegasi b (P = 4.23 days). Discuss
what effects together make it easier to detect planets via radial velocity that are both
more massive and closer in to the host star (hint: it’s more than just a larger K).
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3. Calculate the radial velocity semi-amplitude caused by Earth orbiting our Sun, again
assuming it is viewed edge-on. You may use Mg = 5.97 x 10** kg, and Py = 365.2 days.
How does this compare to the radial velocity accuracy that modern instruments have
of ~ 0.3 m s™! (textbook, Ch. 2.4)?
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3 Detecting exoplanets: astrometry
Our agenda for Day 3 is the following:

1. Finish up/recap radial velocity (10 min)
2. Cover the fundamental method and history of astrometry (15 min)
3. Derive the astrometric wobble of a star with a companion planet (15 min)

4. Group activity: calculate the astrometric wobble and compare it to historical “detec-
tions” (25 min)

5. Cover modern space-based astrometry (10 min)

Today’s reading is from our textbook, Ch. 3.1-3.9. This will cover what sets the ap-
parent size of the astrometric “wobble,” our current ground- and space-based observational
capabilities, and inferring planetary system properties with astrometry.

3.1 Astrometry: notes
3.1.1 Method, historical and modern observations

Astrometry is perhaps the most intuitive exoplanet detection method: observing the
gravitational influence of an unseen companion planet by studying the changing position of
its host star on the sky. As a result of its requirement only to measure precise positions of
stars, it has a long historical record dating back to William Herschel claiming a stellar or
planetary companion to 70 Ophiuchi in 1779.

The observable for the astrometric detection of exoplanets is simply the angular shift of
the location of a star in the sky as it orbits the center of mass of a star-planet system. The
top-left hand panel of Figure 2.1 (and the gif from the class slides) demonstrate the orbit
of a star around the common center of mass of a face-on star-planet system. However, the
astrometric shifts due to the planet (generally < 1 milli-arcsecond) are much smaller than
other motions of the star on the sky due to proper motion and parallax — as a result, these
effects need to be accounted for to determine the astrometric motion due to the planet.

The proper motion is the apparent shift in angular location of a star as it moves across
the sky. Proper motion is caused by the tangential motion of a star on-sky, which is in the
direction orthogonal to the radial motion (which as we discussed last class, can be constrained
by RV measurements). Figure 3.1 shows the proper motion of Barnard’s star over the course
of eight years, which is the highest proper motion of any star (and which you will calculate
in our group activity). Proper motion is defined as

= @ _v (3.1)
dat d
where 6 is the angular position, vy is the transverse (tangential) velocity, and d is the distance
to the star. As you can see, proper motion is the equivalent to the angular speed of a star
across the sky in the transverse direction parallel to the plane of the sky.

Parallax is the apparent shift in position of a star on sky (relative to distant background

stars) due to the motion of Earth around the Sun. Figure 3.2 shows a schematic of how
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Figure 3.1: Barnard’s star has a high proper motion which is clearly detectable from year-
to-year.

Background
stars

K %

Earth

1A.U.

Apparent positions of the
nearby star for observations

taken 6 months apart * *

Figure 3.2: Schematic showing how trigonometric parallax relates to distance and the
Earth-Sun separation.

the parallax of a star p is related to the Earth-Sun distance (1 au) and the distance to the
star d. Using the small-angle approximation, 1 au = pd, and thus the distance to the star is
d =1 au/p. Astronomers traditionally measure parallax in arcseconds, causing the distance
to a star with a parallax of 1 arcsecond to be d = 206265 au. This distance scale has in turn
been defined as the “parsec” or pc (distance with a PARallax of one arcSECond), leading to
the traditional formula for parallactic distance that we used on Day 1:

1

p(arcsec)

d(pc) = (3.2)
For reference, the parallax of Barnard’s star is 0.545 arcseconds, which implies that its
distance is 1.84 pc. As is discussed in Section 3.2, astrometric measurements from the
ground are fraught due to atmospheric turbulence limiting seeing, with typical astrometric
precision of most ground-based surveys ~ 100 milli-arcseconds for targets with m, = 10.
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However, for large (10 meter-class) telescopes like the VLT, astrometric precision can reach
the ~ 300 pas level for bright targets in good seeing conditions. The majority of astrometric
measurements of parallax come from space-based measurements with the Hipparcos (1989-
1993) and Gaia (2013-) observatories. Hipparcos had a characteristic astrometric accuracy of
1 mas for m, = 10, while Gaia has a significantly improved characteristic accuracy of 10 uas.
Figure 3.3 shows a typical series of astrometric measurements over the course of three years
from Hipparcos, showing the proper motion (movement from bottom left to upper right)
along with parallax (loops along this movement, one per year).
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Figure 3.3: Example of the measurement of the path in the sky of a Hipparcos star.

Now that we’ve covered what needs to be removed to isolate the astrometric signal due
to an unseen planet, let’s preface our discussion of actual astrometric planetary detections
with a parable. Prof. Peter van de Kamp at Swarthmore College observed the astrometric
positions of Barnard’s star on their 24”7 telescope starting in 1938. Figure 3.4 shows his
observed changes in right ascension of Barnard’s star over obervations spanning a 31-year
baseline from 1938 to 1969. Van de Kamp inferred from the R.A. changes of Barnard’s
star that there were two planets with masses of 1.1 and 0.8 Jupiter masses orbiting the
star with periods of 26 and 12 years (van de Kamp, 1969). However, his own successor at
Swarthmore, Wulff Heintz, showed that these changes were not due to stellar motion but
due to abberations on the photographic plates used to record the changing position of the
star. This displays the challenges of ground-based astrometry, and as we’ll discuss next the
first promising astrometric detection came from space-based observations.
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F1c. 1. Barnard’s star: Yearly means, averaging 102 plates and
weight 69; time-displacement curves resulting from two circular
orbits with P =26 years and P =12 years.

Figure 3.4: Van de Kamp’s observed “astrometric” motion of Barnard’s star, along with
fits for two planets with orbital periods of 26 and 16 years.

The astronomy community had to wait until 2002 for an undisputed detection of planets
via astrometry using Hubble Space Telescope observations of the GJ 876 system (Benedict
et al., 2002). In this case (and almost all other cases of planets detected via astrome-
try), the planets in the GJ 876 system had already been discovered via the radial velocity
method. There are only three cases of planets discovered by astrometry (according to the
NASA Exoplanet Archive, https://exoplanetarchive.ipac.caltech.edu/docs/counts_
detail.html), but the upcoming Gaia DR4 will likely change that — Gaia astrometry is ex-
pected to discover tens of thousands of planets (Perryman et al., 2014)

Combining planet detections with RV (or direct imaging, as we’ll discuss in two weeks)
with follow-up astrometry has provided one method of breaking the Msin(i) degeneracy.
Figures 3.5 and 3.6 show the example of the ¥ And system, which has three planets that were
previously discovered by RV, the outer two of which cause the detectable astrometric motion
of v And A (McArthur et al., 2010). In this case, combining astrometry and RV together
allows direct measurements of inclination because astrometry directly constrains a, e, w, and
t, (where w is the argument of pericenter and ¢, is the time of pericenter passage) while RV
directly constrains e, P,t,,w along with the combination of a,e, P, i through the RV semi-
amplitude K. As a result of astrometry providing a and RV providing P, we can now also
solve Kepler’s 3rd law (a®/P? oc M, + M,) to provide another independent determination
of M, and thus sin(z) combining the two methods. In practice, astronomers do a joint fit
to both the astrometry and the RV data (see Figure 3.6) in order to directly constrain M
through a joint minimization process (see textbook Eq. 3.25) rather than iterating between
the two solutions.

3.1.2 Astrometric wobble due to a companion planet

In the most deceptively simple derivation we’ll do this semester, the maximum astrometric
spatial shift of a star due to an unseen planet can be determined from the definition of center
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Figure 3.5: On-sky astrometric reflex motion of ¥ And A due to its companion planets ¢
and d. Measured “normal points” (averages of individual data points) are shown in black
filled circles, while the time of observations are shown in the open circles. The curved line
shows the best-fit model, and the smaller straight lines show residuals.

of mass of the system that we used previously to derive Equation (2.7):

M*T* = Mpr . (33)
Defining the orbital semi-major axis a = r, + r., we can substitute for r,
M,
e = M’j (a—ry) (3.4)
and re-arrange to find
M M,
T L ~a—L (3.5)

BT T T
which is equivalent to textbook Eq. 3.1. Importantly, Equation (3.5) is the motion in
projected distance, while the observable is the angular shift. Similar to parallax, we can
again use the small-angle equation r, = da to solve for the angular astrometric shift «

a M, a M,
a:——m_
dM, + M, dM,’

which can be written in scaled power-law form in units of arcsec (textbook Eq. 3.2):

M, a d \"
a R~ <M*> (1 au) (1_pc> arcsec. (3.7)
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Figure 3.6: Astrometric fit (left) and RV fit (right) to ¥ And A. The top left panel shows
the residual motion due to planet ¢, and the bottom left planet d, with solid black points
showing averaged data and open circles showing individual observations. Planet b is fit for
in the RVs, but does not impact the astrometry significantly due to its close-in orbit.

3.2 Astrometry: group activity

Peter Van de Kamp is (in)famous for his early claims of two approximately Jupiter-mass
planets orbiting the nearby Barnard’s star (d = 1.84 pc, M = 0.14 M). This exercise will
help you infer whether he even had the ability to detect planets around Barnard’s star via

astrometry.

1. Calculate the amplitude of the Sun’s angular astrometric wobble (in units of milli-
arcseconds) due to Jupiter if it were viewed from a distance of 10 pc. Note aj,p =

5.23 au.

2. Determine the amplitude of the astrometric wobble of Barnard’s star due to the hypo-
thetical Jovian-mass planet on a 26-year orbital period.

3. The tangential velocity (perpendicular to the radial velocity) of Barnard’s star is ~
90 km s~!. Calculate the proper motion of Barnard’s star in units of arcsec/year, and
compare this to your answer in part (b).
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4 Detecting exoplanets: transits
Our agenda for Day 4 is the following:

1. One-slide intro to the transit method (5 min)
2. Derive the transit depth and transit probability (15 min)

3. Group activity: calculate the transit depth and probability for HD 209458b and Earth
(20 min)

4. Mathematics of transits: impact parameter (15 min)

5. Group activity: draw some transits! (20 min, till end of class)

6. Mathematics of transits: stellar density (10 min, if time)

7. Transit method in practice: Kepler, TESS, ground-based surveys (15 min, if time)

Note that we’ll be finishing transits during the next lecture, given that timing is a relatively
short topic. Today’s reading is from the textbook, Ch. 6.1-6.6 and 6.13, and/or the Winn
handout on ELMS. This will cover the fundamentals of the transit method, previous transit
searches from the ground and space and notable discoveries, as well as modeling transit light
curves.

4.1 Transits: notes
4.1.1 Transit depth, probability, and duration

The transit method detects planets through the small dip in observed starlight that
occurs when the planet passes between the star and the observer’s point of view. The
relative fraction of sky that a given object subtends can be quantified by the solid angle

A

Q - m 9 (4.].)

where A is the projected area of the object and d is the distance to the object. For a
(spherical) star or planet, A = mR?. The transit depth is then simply the relative fraction
of the star’s area that the planet covers (blocks)

RZ 2 2
Q, 5.7 , Am(d + a) N (Rp) 7 (4.2)

Q, Ard> TR?

R,

using the valid assumption that the distance between the star and planet a « d. Then, the
total flux from the system during a perfectly edge-on transit event can be related to the

unocculted stellar flux F, as
R\ 2
F=F|1- P
()

where note that F, can itself vary over the course of a transit. This is because regions near
the edges of the stellar disk appear dimmer by a factor that scales with 1 = cosf, where

: (4.3)
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Figure 4.1: Example
of limb darkening in
an exoplanet transit.
Note how the shape
of the transit is chro-
matic, as limb darken-
ing has a larger effect
in visible wavelengths.
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f is the angle between the direction of the observer and the location of the stellar surface.
This physically occurs because the effective photosphere of the star becomes shallower (at
higher altitudes and lower pressures) near the limb due to the enhanced optical path of a
light ray to escape the limb relative to the center of the disk. Usually, stellar atmospheres
near the photosphere decrease in temperature with increasing height, so emission from these
higher regions near the limb is cooler and redder, causing the limb to appear darker — that
is why this is termed “limb darkening.” As a result, the decrement in flux is smaller near
the edge of the stellar disk and increases towards the center, resulting in transits with a
U-shape rather than a flat bottom (see Figure 4.1). This effect is chromatic, such that limb
darkening affects bluer wavelengths more, because these wavelengths have a larger change
in photosphere pressure from the center to limb of the stellar disk.

For a circular orbit, the transit probability can be calculated by considering the range
of angles at which an observer at infinity would see the planet occult the stellar disk. To
derive this, we can define an angle 6y = 90° — 4, which is the angle of the planet’s orbit with
respect to the observer. We can then integrate to find the probability that the planet lies
within the maximum possible angle from our line of sight such that it transits its host star

(which is simple for a circular orbit, but more complex for an elliptical orbit, see textbook
section 6.13.6):
Sgo cosfdf) sind|5° _sinfy R, (4.4)
Sg/Q cosfdo sin9|g/2 1 a .
As a result, the transit probability does mot depend on planet radius, and is larger for
planets with smaller orbital semi-major axes. The full expression for transit probability on
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an eccentric orbit, accounting for the possibility of grazing transits, is

_ R.+R,

— P 4.5
a(l —e?) (4.5)
Lastly, the duration of a transit can be simply estimated as
2R,
T & ) (4.6)
Up
where v, is the orbital velocity of the planet. For a circular orbit, we find
a
~ 2R\ | =—— 4.7
T GIL (4.7)

which can be re-written in terms of common quantities as (textbook, Eq. 6.11):

M\ 2/ a \12 (R,
T=13hr(M®> <1au> <R®>. (4.8)

4.1.2 Transit geometry, impact parameter

Figure 4.2 shows the detailed transit geometry for a single planet transiting a single star.
Assuming the orbit is circular and the planet mass is much less than the stellar mass, there
are five equations that can altogether specify the system. The first is simply the transit

depth
R\ 2
0= <R—p) , (4.9)
which we previously derived.

The second is the transit duration, or t;, which is the time between the first and fourth
contacts. Figure 4.3 shows schematics of the transit duration with respect to the full orbit
as well as the disk of the star. Given the triangle made between the line through which the
planet crosses the disk and the center of the stellar disk, we can relate half of the length of
the chord that the planet traverses to the planet and star radii as \/(R. + R,)? — a? cos?(1).
Using the left hand side of Figure 4.3, we can then note that the angle of the full orbit that
the planet sweeps out during transit is sin™'(y/(R. + R,)? — a® cos?(i)/a). We can thus
relate this angle as a fraction of the full orbit (27) to determine the transit duration

ty = 2£28in1 <\/(R* ) COSQ(i)) ; (4.10)

™ a

Which is often re-written in the form of Seager & Mallén-Ornelas (2003):

P . (& [(1 + (Ry/R.))? — [(a/R*)COSi]2]1/2> | @11)

t; = — sin 5
T a 1 — cos?z

The third is the transit shape, which is the ratio of the duration of the flat bottom of
the transit ¢; to the full transit ¢;. In the case of the flat bottom, half of the chord that the
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Figure 4.2: Schematic of the transit geometry, showing the 1st, 2nd, 3rd, and 4th contacts,
total transit duration ¢;, and full occultation duration ¢, along with the definition of impact
parameter b. Figure adapted from Seager & Mallén-Ornelas (2003).
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Figure 4.3: Schematic of the transit duration as a fraction of the total orbit (left) for which
some portion of the planet occults the star (right). Adapted from Sackett (1999).
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planet traverses is y/(R. — R,)? — a® cos?(i) (the difference with ¢, being the minus sign in
R, — R,). Thus, the ratio of the durations can be expressed as

sin(tyr/P) _ /[l - (By/R.)P — [(a/Re)cos(i)* (4.12)

sin(t,m/P)  \/[1+ (R,/R.)]* — [(a/R.)cos(i)]?

The combination (a/R,)cos(i) = b, which is known as the impact parameter. The impact
parameter is the projected distance between the planet and star centers curing mid-transit
in units of R,, and varies from b = 0 for a transit that crosses the mid-plane of the stellar
disk to b = +1 for a grazing transit where at most half the planet occults the stellar disk
(note that b can also be larger than 1 for a barely grazing transit).
The fourth equation that specifies a transit is well-known to us — Kepler’s third law:
472a?

P? = GOL L) (4.13)

The fifth and final equation is an assumed power-law mass-radius relationship for the host
stars
R, = kMY | (4.14)

where k is constant for each luminosity class (main-sequence, giant stars, etc.) and x de-
scribes the power-law relationship for that sequence. For Sun-like stars, x ~ 0.8.

4.1.3 Measuring stellar density via transits

The stellar density p, is the only parameter directly constrained from a transit observation
— note that the planetary radius R, is dependent on the (a priori unknown) R,, and thus R,
is usually dependent on our model uncertainty for R,. As a result, the direct measurement
of p, is critical to better predicting the stellar radius by benchmarking stellar models.

To derive the stellar density, we start by re-arranging Equation (4.11) to solve for the
ratio a/R,:

(4.15)

a (L4 V6)? = b1 —sin®(t/P)]
R, sin?(t,7/P) '

Denoting the right-hand-side of the preceding equation as f(4,b,t;, P), we can note that
R, = a/f(8,b,t;, P) = f(6,b,t;, P)"\[GM,P?/(47?)]"/3. Noting that p, = M,/R3, we can
find p, = 472/(GP?)f(6,b,t;, P)® — which does not depend on M, or R,, and instead only
on measurable quantities from a transit observation. The full expression for p, is

a2 (Ve - [ —sin?(tr/P)]
e (GPQ) ( sin®(t;7/P) ) (4.16)

4.1.4 Transit method in practice

Up until the launch of CoRoT, all detections of exoplanets were from ground-based
surveys. After the inital set of surveys done in parking lots with small telescopes (i.e., the
Charbonneau transit detection of HD 209458b) that followed up RV detections, a set of
more complete wide-field surveys were developed. These surveys were designed to have a
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Figure 4.4: The observation “sectors” of TESS (left) and the resulting viewing zones of
the mission (right).

large etendue E = A€), where A is effective aperture area and 2 is the solid angle on the
sky imaged in a single exposure, and short cadences of a few minutes. Long-lasting early
surveys include (Super)WASP (2005-), HAT(NET) (2003-), and KELT (2005-) — these early
surveys have detected hundreds of planets, including some of the best studied objects (e.g.,
WASP-39b, the target of the recent JWST ERS transmission spectroscopy program). The
recent focus of ground-based surveys has been to detect rocky planets orbiting small M-dwarf
stars, and these surveys of nearby M dwarfs include MEarth (2008-), TRAPPIST (2010-),
and its successor SPECULOOS (2017-).

The first space-borne transit observatory was CoRoT, which launched in 2006 and de-
tected ~ 32 planets. Kepler was the first truly transformative exoplanet mission, which was
launched in 2009 and detected 2,778 confirmed planets (which is a sea change given that
less than 500 planets were known at the time of launch). Kepler was so successful due to
its pointing stability, broad field of view, and focus on only a single field of 150,000 stars
near the constellation of Cygnus with 30 minute cadence. The current space-based exoplanet
detection workhorse is the Transiting Exoplanet Survey Satellite (TESS), which launched in
2018. TESS is the first all-sky exoplanet survey, and it observes space in sectors, which it
observes for a little less than a month (27 days) at a time. This results in the ecliptic poles
being continuously observable by TESS when it is observing that hemisphere (the sector
paths flip from N to S hemisphere, 13 in each), which is critical because the JWST contin-
uous viewing zone is also at the ecliptic poles. As a result of its focus on finding nearby
transiting planets that can be studied with follow-up, TESS is often considered a “finder
scope” for JWST.

One drawback of transit observations is that they have a somewhat high false positive
rate of ~ 10%, given that other astrophysical phenomena (especially eclipsing binaries) can
cause transit-like signals. As a result, it is critical to combine transit observations with
radial velocity measurements to confirm that the transit signal is indeed due to a planet.
Importantly, putting together both transit and RV measurements measure the planet density;,
as transit measures R, and ¢ while RV measures the combination M, sin(i).
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The combination of transit and RV is also a powerful way to determine the angle between
the stellar spin and planetary orbit. Figure 4.5 demonstrates how the “Rossiter-McLaughlin
effect” caused by a planet blocking emission from different regions of the stellar disk during
transit can cause changes in the line profile of the star due to the planet blocking blueshifted
or redshifted regions caused by the rotation of the star Doppler shifting/broadening the
spectrum. If the planet is aligned with the stellar spin, the variation will be such that the
velocity of the star appears to shift back and forth. However, if the planet is in a near-polar
orbit, the effect on the Doppler shifting/broadening of the lines will be smaller.

4.2 Transits: group activities
4.2.1 Calculating transit depth and probability

Recall that the transit depth 6 = (R,/R,)? and the transit probability p = R,/a. Also,
note that the transit duration is (textbook, Eq. 6.11)

M N2, a \12 (R,
=13h . 4.1
T 3 hr (M@> <1 au) (R@> ( 7)

HD 209458b was the first planet discovered via transits. It orbits a Sun-like star with a
semi-major axis of 0.048 au, and has a radius of 1.38 Ry,p.

1. Calculate the transit depth, probability, and duration of HD 209458b. Assume that
HD 209458 has the same properties as the Sun. (Groups 1-2: calculate the transit
depth. Groups 3-4: calculate the probability. Groups 5-6: calculate the duration.)

2. Calculate the transit depth, probability, and duration of Earth around the Sun.
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(Groups 1-2: calculate the transit depth. Groups 3-4: calculate the probability. Groups
5-6: calculate the duration.)

Photometric measurements capable of measuring the transit dip of HD 209458b were
available more than a decade prior to its detection in 1999. If this was the case, why
did it take so long to find the first transiting planet?

As you found, detecting Earth around the Sun with the transit is challenging. How
would you go about designing a survey to find a copy of Earth with the transit method?

4.2.2 Drawing transits

Let’s gain some conceptual understanding by drawing idealized transit events, for 5 dif-
ferent scenarios:

1.

Planet with 7 = 90° transits across the center of the star (i.e., a baseline transit event
— use this as the reference for all your other drawings).

. Smaller radius planet transits the same host star.

Planet transiting with ¢ < 90°, but not in a grazing configuration.
Planet with an impact parameter of b = 1.

Longer period planet with ¢ = 90°.
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5

Detecting exoplanets: timing

Our agenda for Day 5 is the following:

1.

2.

We'll finish covering transits in full (see Day 4 notes) before moving on to timing. Timing
on its own has only been used to find 7 confirmed planets around pulsars and 2 orbiting
pulsating variable stars, while transits have found 4153 planets, so fractional to its detection
count we're giving timing plenty of attention! Today’s reading is from the textbook, Chs.
6.20, 4.1-4.2 or the Agol & Fabrycky handout (I highly recommend the latter). This will
cover transit timing variations and applying timing to find planets orbiting pulsars.

5.1

Recap transit geometry (5 minutes)

Measuring stellar density via transits (5 minutes)
Group activity: draw some transits! (20 minutes)
Transit detections in practice (15 minutes)

Transit timing variations (10 minutes)

Principles of detecting planets via timing (10 min)

Group activity: detecting pulsar planets (if time, if not either start next class with this

or skip)

Timing: notes

5.1.1 Transit timing variations

Figure 5.1: Diagram showing how TTVs on an outer planet can be caused by the gravita-
tional influence of an inner planet on the host star. Adapted from Agol et al. (2005).

Transit timing variations (TTVs) are deviations from the regular transit times expected
for a single planet on a Keplerian orbit around its host star. Transit timing variations are
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Figure 5.2: Diagram show-
ing how TTVs of hypothetical
planet ¢’s with various orbital
periods and eccentricities can
affect the transit timing of HD
209458b. Adapted from Hol-
man & Murray (2005).

caused by the presence of additional bodies in the system, causing the orbit of the planet and
star to become non-Keplerian and the transit timing to become aperiodic. Figure 5.1 shows
an example of TTVs driven by the gravitational influence of an unseen inner planet on the
orbital location of the host star relative to the barycenter. This causes transit times to vary
between that expected from the (linear) Keplerian ephemeris. Importantly, TTVs can be
caused by the interactions of a planet with another planet, which itself does not necessarily
need to be transiting — so TTV provides a way to find additional non-transiting planets in
a system with known transiting planets (note RV can also do so).

TTVs can thus be used to infer the presence of additional planets in a system from
the transit observations of the transiting planet(s) in that system. Figure 5.2 shows an
example of the TTVs that would be induced on the hot Jupiter HD 209458b by hypothetical
unseen planet ¢’s with periods of 19.2 — 99.8 days and eccentricities from 0.1 — 0.7. The
TTV amplitude is on the order of tens of seconds, which is measurable with a sufficient
number of transits. To date, TTVs have been used to detect 28 confirmed planets (https:
//exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html).

TTVs caused by planet-planet gravitational perturbations are largest for systems near
an orbital resonance. The strongest mean motion orbital resonances occur when the ratio
of orbital periods of planets are in a ratio N : (N + 1), where N is an integer. This causes
conjunctions between the planets to always occur at the same orbital phase, giving each
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planet a gravitational “kick.” The resulting timing variation scales as

P Mpert

TTV ~
45N Mpert + Mtrans 7

(5.1)

where Mper is the mass of the perturber and Mi,ans the mass of the transiting planet.
TTVs can be as large as tens of minutes for planets in closely packed resonant chains, easily
detectable for transit photometers like TESS with cadences of seconds to minutes!. Most
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Figure 5.3: Observed TTVs of planets in the TRAPPIST-1 system, along with best fit
dynamical models for the contribution from each planet. Adapted from Agol et al. (2021).

notably, the near-resonance of the seven planets in the TRAPPIST-1 system causes large
TTVs (see Figure 5.3). This enables the masses of each planet to be measured (to the few %
level) by observing their TTVs over long timescales and fitting them with N-body integrations
Agol et al. (2021). A particular “chopping” pattern appears in models of TTVs in these
near-resonant systems due to the gravitational perturbations being largest at conjunction of
planet pairs. The typical period of chopping is the period between conjunctions, known as

ITESS has an exposure cadence of 2 seconds and postage stamp cadences of 20 seconds and 2 minutes,
see https://tess.mit.edu/science/observations/.
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the synodic period (Agol & Fabrycky, 2018), which for a pair of planets with orbital periods
P, and P, is equal to

-1

Pyn = (P71 = B;7Y) (5.2)

5.1.2 Principles of detecting planets via timing

Timing is another indirect detection method that has been used to find 9 planets to
date on its own (not combined with transits, given that as you saw above timing is a more
useful tool for transiting exoplanets). Timing is useful as a detection method when the host
star has some time-periodic signature that would repeat perfectly regularly ad infinitum if a
planet were not orbiting it. In the presence of a planet, the motion of the host star around
the common center of mass causes this timing to be aperiodic, with an amplitude related to
the effect of light travel time on the otherwise periodic signature.

The timing offset due to light travel time 7 in the direction of the line-of sight is

T=— (5.3)

where c is the speed of light and r, is the separation of the star to the star-planet barycenter
(center of mass). In general, the orbit may be offset from our line of sight, requiring the
usual factor of sin(i). The expression for 7 from an arbitrary viewing orientation is
7, Sin(e
p o Tesint®) (5.4)
c
For a circular orbit, we previously related r,/r, = M,/M, (see Equation 2.7). We can thus
provide a general solution for 7 given circular orbits
rpM, sin(i)  adM, sin(7)

- ~ 5.5
T cM, cM, ’ (5:5)

where we have made the approximation 7, ~ a in the second expression. This is equivalent
to Eq. 4.1 of the textbook.

Most planets found via timing have been found orbiting radio-loud millisecond pulsars.
Assuming a circular, edge-on orbit and a pulsar mass of 1.35 Mg (close to the Chandrasekhar
mass), the timing signature of a planet orbiting a pulsar is (textbook, Eq. 4.4)

M\ [ P\
Tp ~ 1.2 ms M@ 1_yr s (56)

where we have used Kepler’s third law to relate a and P. Such small timing variations
are detectable due to the extreme regularity of millisecond pulsars (with spin-down rates of
only ~ 107 s71). However, note that the timing signature scales linearly with the planet’s
separation from the system barycenter (or P? 3), so for planets with wider orbits the timing
signature can be as large as a few seconds. This allows for the detection of planets via
measuring the change in the timing of regularly pulsating variable stars with short pulsation
periods of minutes to hours.
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5.2 Finding planets via pulsar timing: group activity

The first confirmed? exoplanetary system (ever!) was found in 1992 (Wolszczan & Frail,
1992) around the pulsar PSR B1257412. This is a system of three planets, as confirmed
two years after the initial discovery of the system (Wolszczan, 1994). Planet b has a mass of
0.022 Mg and an orbital period of 25.26 days. Planet ¢ has a mass of 4.13 Mg and a period
of 66.54 days. Planet d has a mass of 3.82 Mg and a period of 98.21 days. Please split into
6 groups — Groups 1-2 will calculate properties of planet b, Groups 3-4 will study planet c,
and Groups 5-6 will study planet d.

1. First, calculate the amplitude of the timing signature caused by your planet in ms
using Equation (5.6), and compare it to the 6.2 ms period of this millisecond pulsar.
One of these three planets was discovered two years after the others — try to determine
if your group’s planet could be the one discovered last.

2. Pulsar planets have never been found using another detection method (e.g., transits,
RV, imaging, astrometry). This and the next part of the problem will help us un-
derstand why. Calculate the astrometric wobble of the host star due to your group’s
planet (recall Equation 3.7 from the Day 3 notes). To do this, assume that the stellar
mass is 1.35 Mg (which we assumed in Equation 5.6), and use the known distance to
the system of 710 pc. Compare this to the Gaia detectability threshold of 0.01 mas.

3. Now calculate the calculate the transit probability of your group’s planet. Note that
the stellar radius is tiny (~ 10 km), so the transit probability expression reduces to
p ~ R,/a. Assume that the planetary densities are 5.5 g cm ™3, similar to Earth. Given
that there are only seven confirmed pulsar planets in the NASA exoplanet archive,
discuss whether it is likely that a pulsar planet transit would be caught.

4. If time remains, discuss with your group why RV and imaging are also poor detection
methods for pulsar planets like those found by Wolszczan (1994). No calculations
needed, just qualitatively discuss — even though we haven’t covered direct imaging,
consider whether the small separation of the planet could be angularly resolved at the
distance of the system.

2 As discussed on the slides, confirmation is key — the first reported pulsar planet was simply an alias, see
Bailes et al., 1991 and the retraction in Lyne & Bailes, 1992. Thanks to Chris Barnet for mentioning this!
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6 Detecting exoplanets: microlensing
Our agenda for Day 6 is the following:
1. Finish up timing, timing activity (20 min)
2. Principles of microlensing (15 min)
3. Microlensing derivations: Einstein radius, magnification, event length (30 min)

4. Microlensing in practice (10 min)

Today’s reading is from the textbook, Ch. 5.1-5.4, or from the Gaudi review chapter. This
will cover the principles of microlensing as well as the practical interpretation of microlensing
light curves.

Our mid-term is coming up rapidly (it’s 3 classes from now!). Note that you are allowed
to bring a two-sided 8.5 by 11 inch note sheet to the exam. Everything on this sheet must
be hand-written, and it must be turned in with your exam. The sheet doesn’t need to
include constants and Solar System planetary properties, I’ll provide them. The exam will
cover exoplanet detection methods, everything through what we learn this week in class (i.e.,
material up to and including direct imaging).

6.1 Microlensing: notes

Gravitational lensing is caused by the fact that matter distorts spacetime, affecting the
trajectories of light waves as they propagate across space. If there is (near) alignment of a
background light source and a massive object, the massive object can cause the formation
images of the sources that are distorted (“lensed”) by the object (“lens”). Gravitational
lensing is commonly known through the effect of massive galaxies and galaxy clusters on
radiation, leading to “strong lensing” effects (e.g., visible Einstein rings and Einstein crosses).
For planets, we are concerned with “microlensing” effects where the image itself is not
resolved, only the magnification of the source due to gravitational lensing.

6.1.1 Lens solution, Einstein radius

We will derive the lens solution following Paczynski (1996), see also textbook Ch. 5.2.1.
Figure 6.1 shows the geometry of the lensing problem for a single lens (e.g., a single star),
where S is the source, M is the lens mass, O is the observer, D, is the distance from the
observer to the source, D, is the distance from the observer to the lens, Dy, is the distance
from the plane of the lens to the plane of the source, A is the point at which a light ray
from the source intersects the plane of the lens, R is the distance from the lens to A, R, is
the distance from the lens to the line connecting the source and observer, I is the position
at which the line of sight to the image would be present on the source plane if there were no
light deflection, and « is the angular deflection of the light ray as a consequence of general
relativity. We can further define 6, as the angle between the line of sight to the lens and the
line of sight to the source, and 6; as the angle between the line of sight to the lens and the
light of sight to the image.

The deflection angle of the light ray « is given from general relativity as

4GM
a =
Re?

(6.1)
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Figure 6.1: Geometry of gravitational lensing. The observer is to the left (O), the source
is at the right (S), and the lensing mass is M. Adapted from Paczynski (1996).

where M is the mass of the lens and c is the speed of light. Note that the Schwarzschild
radius Rg. = 2GM/c?, so a = 2Rg./R. We can further define the lens (M) as having an
angular position (x,,, ¥m,) on the sky, and the observer as looking at the sky in the direction
of angular coordinates (z, ). Doing so, we can write the position of M on the lens plane as
(Xm = mDa, Yir = ymDa), and the position of M on the source plane as (X s = . Ds,
Yivs = ymDs). We can also write the location at which the line of sight of the observer
intersects the lens plane at point A as (X4 = Dy, Y4 = yDy), and the coordinates for point
I on the source plane as (X; = xDyg, Y; = yDs). With this, we can then break the angle of
deflection « into two components

Xa— Xy Ya—Yy

Ay = OQ—————— ., Qy = @
R i R

From these components, we can the determine the coordinates of S on the source plane as

(6.2)

Xs=X1—a;Dgs,Ys =Y — ayDys . (6.3)

We can now use the small angle equation to relate the distances on the lens plane to the
distances on the source plane:

R+ R, ~(X,—X[)?+ (Y, —Y))?
Dd B Ds '

(6.4)

We can now use Equation (6.3) to relate the distances on the lens plane to the distances to

the lens and source D AGM D..D
— oD, 2% — ds7d
R+ Ry = aDas D, Re?2 D,

This can be recast as a quadratic lens equation
R R Rg

- 4+ 2 LR+ RR-R%L=0 6.6

(6.5)
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where the linear Einstein ring radius

AGM Dy, D
Rp = \/2Rs.D = dD d (6.7)

c2

with Rg. the Schwarzschild radius and the effective lens distance D = DgsDy/D;. Using the
quadratic formula, we can write the solutions for Equation (6.6)

Ry =05 le +4/R2+ 4%] : (6.8)

where note that there are two solutions that correspond to two images of the same source
located on opposite sides of the lens at angular distances of R, /D,y and R_/Djy.

Note that the derivation in the textbook is in angular position rather than physical
position (i.e., for fg and 6;). The textbook’s version of the lens equation is analogous to the
above,

Dy 1
DaD, 0;

where now 0 = \/QRSCDdS/(Dst), which is related to Rg by Rg = 0Dy. One can also
write down expressions for R and 0g in terms of relevant numerical quantities,

fs = 0; — 2Rs, — 02 — 050, — 0% = 0, (6.9)

M\ 2 D. 1/2 DyD,. 1/2
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~ 1. . . 11
e ~voms (70) - (55)  (3) 611

These angular scales are too small to resolve with most ground-based instruments, which led
to the nomenclature “microlensing” due to the images not being resolved. However, these
spatial scales of 5-10 au are prime for detecting planets near the ice lines of the protoplanetary
disks from which they formed, allowing microlensing to probe a novel region of parameter
space (especially relative to transits, which is highly biased toward closer-in orbits). Figure
6.2 shows the resulting appearance of the images of a lensed source as it passes through the
Einstein ring of a point mass. Note the two image paths that stay on opposite sides of the
source as it is differentially imaged while it passes near the line of sight to the lens.

6.1.2 Peak magnification

The microlensing event causes a magnification of the source due to the two lensed images
being brighter than the source itself. This magnification is time-dependent, and peaks at
the time of closest angular separation of the source to the lens (see Figure 6.3). Gravita-
tional lensing conserves surface brightness, so the ratio of the image to source intensity (i.e.,
magnification) is given by the ratio of the area of the image to the area of the source on the
lens plane. The magnification A for each image is related to the image position and source
position on the lens plane and the derivative of the image position with respect to the source
position as ,

u® + 2
SN +0.5, (6.12)
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Figure 6.2: The geometry of gravitational lensing, showing the trajectory of the source
(open circles) and the images (filled ellipses). Adapted from Paczynski (1996).

Where the derivative of Equation (6.8) was taken using the chain rule, and v = Ry/Rpg. The
total magnification is
u? + 2

uvu? + 4
which is always larger than one. Also note that the difference between the magnification of
the two images is constant, A, —A_ =1. Foru« 1, A~u !, andforu>»1, A~ 1 Asa
result, the magnification drops to 1 (no magnification) far from the Einstein ring, with the
magnification during a microlensing event scaling inversely with the ratio of the separation of
the source from the Einstein ring — as a result, events with separations near the Einstein ring
have the largest detectable microlensing magnification. Note that though the magnification
can be formally infinite for a source that has an angular separation of zero from the lens, in
practice the magnification is always finite.

A=A, +A = (6.13)

6.1.3 Planetary perturbation

Planets cause their own microlensing event that is imprinted upon the larger magnifica-
tion (and longer duration, see next section) event of their host star. If the planet perturbation
is before or after the source crosses the Einstein ring, the planet causes a single trough (if
before stellar Einstein ring crossing, due to reducing the brightness of the image within the
Einstein ring), or peak (if after stellar Einstein ring crossing, due to splitting the image out-
side the Einstein ring), see Figure 6.4. However, if the source crosses the planet within the
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Figure 6.3: The magnification due to a point lensing event as a function of time, normalized
by the time it takes the source to move across the Einstein ring t,. Here p is the impact
parameter, which is the smallest angular distance between the source and the lens (R;) in
units of the angular Einstein ring radius. Adapted from Paczynski (1996).

Einstein ring, the behavior can be more complex, resulting in a multiple-peaked structure
of the magnification curve. This is because the planet distorts the magnification field of
the host star, and if the source crosses a caustic (region of distortion) the planet effectively
induces an astigmatism in the lensing pattern. Caustic crossings can occur for star-planet
separations between 0.5 — 20p.

One common point of confusion is that we detect planets lensing the far background
source, not their own host star. This is because the Einstein radius Rg o¢ 1/Dy,, and so if
the planet and star are very nearby the Einstein radius of the planet lensing its host star is
very small. The magnification then scales as Rg/Rs, so the magnification due to the planet
lensing event of the host star is undetectable.

Lastly, note that planets without a host star (“rogue planets”) can also cause microlensing
events. These are short-duration and small-magnification events that look like standard
single microlensing events but with masses that are clearly below the Deuterium burning
limit. As a result, microlensing is the only detection method that allows the study of planets
without either directly seeing their radiation or inferring their presence from their indirect
effects on a host star.
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6.1.4 Event length

The typical timescale for a microlensing event is the time it takes a typical star in the
bulge to cross the Einstein ring. We can express this as 7g = Rp/v;, where v; is the tangential
velocity of the star (i.e., on the plane of the sky). Using our expression for the Einstein ring
radius, Equation (6.10), we can write this as

M\ D, \"* Dy\"? (200 km s~

Importantly, 7zocv/M, which means that planetary event durations are much shorter than
stellar microlensing events. Planetary events typically last less than a day, and for Earth-
mass planets the event durations are on the order of 3 — 5 hr. This is why microlensing
searches typically look for longer-term increases in light due to a stellar microlensing event
and then use high cadence observations with multiple facilities to search for a planetary
companion.

6.1.5 Microlensing in practice

To date, microlensing has discovered 210 planets, with the first discovery of a planet
via microlensing (OGLE-2003-BLG-235L b) in 2004. This makes gravitational microlensing
the third-most prolific exoplanet discovery method after transit and radial velocities. All
planets discovered to date have been detected from the ground, primarily from 3 surveys,
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OGLE (1992-), KMT (2009-), and MOA (2006-2014). Each of these surveys use a wide
etendue to search the central galactic bulge through Baade’s window. These surveys cover
~ 8 deg? of sky and probe thousands of events per year, most of them stellar without
a planetary perturbation. An early microlensing discovery of a planet (OGLE-2005-BLG-
390b) is shown in Figure 6.5. Note that the full lensing event lasts over 50 days, which allows
for follow-up from a wide range of ground-based observatories to characterize the shape of
the stellar and planetary components of the source magnification. These surveys have also
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Figure 6.5: The discovery light curve of OGLE-2005-BLG-390 (January 2006). Here the
planet causes a small perturbation well after the primary microlensing event. The planet has
a mass of ~ 5.5 Mg and a orbital period of ~ 3500 days, and its host star lies at a distance
of 6.6 kpc.

found several free-floating planetary candidates, with an expected abundance of ~ 1 — 2 per
main-sequence star — potentially implying that each forming planetary system leads to the
loss of approximately one planet to interstellar space.

Space-based observatories have largely been used to follow up ground-based microlensing
signals to date, with few search campaigns that have not found clear evidence of new plan-
etary candidates. However, the Nancy Grace Roman Space Telescope (NGRST, formerly
WFIRST) is an upcoming wide-field space-based survey that may revolutionize the field of
microlensing. Roman will launch in 2027 to L2 with a 2.4 m mirror, comparable to Hubble
but with a 100x larger field of view (0.28 deg?). Roman is expected to find = 1500 planets
via a wide-field microlensing survey as part of its science objectives.
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7 Detecting exoplanets: direct imaging
Our agenda for Day 7 is the following:

1. Microlensing: recap (5 min)

2. Microlensing: magnification derivation (in groups, 20 min)

3. Microlensing in practice, event length, Roman (10 min)

4. Direct imaging intro activity (10 min, skip if past 40 minutes in)
5. Direct imaging: contrast (10 min)

6. Direct imaging in practice (20 min)

Today’s reading is textbook Ch. 7.1-7.5 and/or the Traub & Oppenheimer handout. This
will cover the fundamentals of direct imaging as well as the practicalities of how direct
imaging is conducted using adaptive optics and coronagraphic masks.

7.1 Direct imaging intro activity

This activity is meant to demonstrate why the current observational characterization of
exoplanets via direct imaging is limited to young, massive planets orbiting at wide separations
from their host star.

1. Groups 1, 2: Calculate the angular separation between Earth and the Sun. Group 1 -
calculate this at a distance of 10 pc. Group 2 - calculate this at a distance of 100 pc.

Groups 3, 4: Calculate the angular separation between the Sun and Jupiter. Group 3
- calculate this at a distance of 10 pc. Group 4 - calculate this at a distance of 100 pc.

Groups 5, 6: Calculate the angular separation between HR 8799 and HR 8799b, which
has a semi-major axis of 71.6 au. Group 5 - calculate this at a distance of 10 pc. Group
6 - calculate this at a distance of 100 pc.

2. For each of your determined angular separations, calculate the approximate size of a
telescope required to detect the planet at a wavelength of 0.6 um around the star at
the given distance (assuming diffraction-limited observations).

3. Estimate the visible light star-planet brightness ratio for your planetary system. To do
so, assume that the planet has an albedo of 1 (i.e., that it is perfectly reflective), and
that we are observing the planet at full phase (i.e., when the full disk is illuminated).
For the HR 8799 group, assume that HR 8799b has the same radius as Jupiter.

7.2 Direct imaging: notes

7.2.1 Planet-star contrast

There are two primary components of the light we observe from any planet: the thermal
emitted light from the planet itself, and reflected light from the host star. Detections of
directly imaged planets to date have been in thermal emission, with these detections finding
young giant planets at wide separations from their host stars. This is because giant planets
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form with high effective temperatures, and cool from this hot initial condition over time (see
Figure 7.1).

The primary quantity to characterize the detectability of a planet via direct imaging is
planet-to-star flux ratio, or “contrast” of the planet with respect to the star. The wavelength-
dependent contrast can be expressed as

fon = (2] 0. (r.)

where B, is the Planck function and ®,,, is the phase function for emission, which depends
on wavelength and the star-planet-observer “phase angle” a. For a circular orbit, cosa =
sin( + w) sin(i). Many observations of planets via direct imaging are in the Rayleigh-Jeans
tail of the Planck function, simplifying the contrast to

RN\>T
Fom ~ (ﬁ) Tpéem()\,a) . (7.2)

For young planets, the effective temperature of the planet is much greater than the effective
temperature the planet would have if it were in thermal equilibrium with the instellation
it receives from the host star (Figure 7.1). For mature planets that have cooled off from
formation (or more generally, planets that receive much more incident stellar power than
their intrinsic cooling luminosity), one can approximate the planetary temperature by the
equilibrium temperature

R,

Tog = T.[f(1 — Ap)]"* .

(7.3)

In Equation (7.3), f is a factor that accounts for redistribution of the received heat from the
star across the planet by e.g., atmospheric (and/or oceanic) circulation, and is f = 1/4 for
full redistribution of the incident stellar radiation (if the thermal energy is equally radiated
to space over the entire surface of the planet). Ap is the Bond albedo, which is the fraction
of total energy incident on the planet that is not absorbed and re-radiated (i.e., the amount
that is scattered/reflected by clouds, haze, ice, and gas).

42



L]
Jupiter

Figure 7.2: Simulated image of
our Solar System as viewed in re-
VS flected light from a distance of
10 pc by a Habitable Worlds
Observatory-like mission. The spe-
cific simulations here are for the
LUVOIR~A mission concept.

In order to directly image planets that are not young, observations have to probe the
reflected light from the planet that originates from the star. Planets have not yet been
directly imaged in reflected light, but Figure 7.2 shows an example image of our Solar System
in the optical from a distance of 10 pc. The wavelength-dependent contrast in reflected light
can be written similarly to that in emitted light as

= () A 000, (7.4

where A, is the wavelength-dependent geometric albedo and @, is the phase function in
reflected light.

The typical planet-to-star contrasts in thermal emission for young giant planets fo, ~
10~* — 1075, which is currently achievable with ground-based telescopes that use adaptive
optics and coronagraphy (see the next section). Those in reflected light are much smaller
— for Jupiter around the Sun, the reflected light contrast is fif ~ 1078, and for Earth the
contrast is fref ~ 1077,

7.2.2 Technological challenges

In order to access the emitted or reflected light from a star, an optical device must be
used to suppress the light from that star. The mask that is placed in the focal plane of the
telescope is called a coronagraph, given that early development of such a device in the late
1800s and early 1900s was for the purpose of blocking light from the Solar photosphere to
reveal the corona. Figure 7.3 shows the optics of a Lyot coronagraph, which was originally
implemented in 1931 by Lyot to observe the Sun. This uses a system of three lenses, along
with two optical masks. The first objective lens forms an image of the star, and an occulting
mask then blocks the disk of the star. There is still significant diffracted light after the
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Figure 7.3: Schematic of coronagraphic optics with an occulting spot and internal Lyot
stop.

image passes through the occulting mask, and so the light is then put through a field lens
that re-images the diffraction pattern, with a Lyot stop then intercepting the diffraction ring
while allowing light from the rest of the image to pass through. Finally, the second objective
lens places the image on the plane of the detector. The coronagraph suppresses the stellar
light within a given region, beyond which the noise is small and planets with a given contrast
are detectable. This angular separation between the host star and the region where planets
are detectable is termed the “inner working angle” (IWA) of the instrument.

This basic coronagraphic method has been improved with more detailed versions of the
Lyot coronagraph, including using pupil apodisation to modify the shape of the point spread
function upon entering the optics, using interferometric coronagraphs that remove the diffrac-
tion pattern by destructive interference, and using phase masks to shift the light in the focal
plane and lead to destructive interference. More recent developments include the vortex coro-
nagraph, which is a high performance phase mask that phase shifts light by transforming its
wavefront from planar to helical, resulting in total destructive interference in a dark central
core. Potential future developments in coronagraphy include the starshade concept, where
an external occulter with a size of ~ 50 m formation flies at a separation of ~ 75,000 km
from a space telescope (values are approximately those for the HabEx mission concept) and
with very precise tolerances (£1 m position, < 1 mm shape) can occult light from nearby
stars to reveal companion planets with contrasts down to 1071°.

Even with a coronagraph, there are still distortions (“speckles”) due to either the at-
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mosphere (for ground-based direct imaging) and/or deformations in the mirror and optical
system (relevant for both ground- and space-based observations) that must be removed in
order to isolate the planetary signal. Astronomers use two primary methods in conjunc-
tion to deal with these: 1) Adaptive optics to move the mirror and compensate for phase
fluctuations, 2) Differential imaging techniques to remove the noise pattern and clean the
image. Adaptive optics is a technique that couples actuators to the telescope mirror itself
in order to deform the mirror in a way that compensates for atmospheric turbulence. These
are very rapid adjustments that are constantly being made on ~ 1 ms timescales across the
mirror, with the number of actuators required scaling with (D/r,)?, where D is the tele-
scope diameter and r, is the atmospheric wavefront coherence length (typically ~ 0.2 m in
the visible, ~ 1 m in the NIR). As a result, current ground-based direct imaging surveys
use ~ 10% actuators, while future surveys with the ELTs will use ~ 10* actuators. These
adaptive imaging systems are often focused using laser guide stars, which send a laser beam
pulse from the ground to the upper atmosphere that either excite Na in the mesosphere or
use shorter-wavelength Rayleigh scattering to make an artificial “star” that can be used to
focus the adaptive optics system and account for atmospheric turbulence.

Figure 7.4: A) Image of Vega after flat field normalization, bad pixel correction, distortion
correction, but before ADI. B) Image of Vega after a single ADI difference. Adapted from
Marois et al. (2006).

The noise pattern is removed for both ground-based and space-based imaging by differ-
ential imaging techniques. The most common is angular differential imaging (ADI), which
rotates the image and uses the fact that the noise pattern is set by the instrument and
optics to then subtract out the noise when combining rotated images. Angular differential
imaging from the ground uses the Earth’s rotation over the course of the night to combine
images, while space-based observations physically roll the telescope in order to rotate the
image. Other forms of differential imaging include reference differential imaging (RDI) where
observations of a reference star (ideally without companions) are subtracted, or spectral dif-
ferential imaging (SDI) where the speckle pattern is suppressed by separating the light from
a planetary absorption or emission feature from the stellar spectrum.
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8 Detecting exoplanets: inter-comparison of detection
techniques (Day 8)
Our agenda for Day 8 is the following:

1. Wright & Gaudi for the modern day activity (30 minutes)
2. Strengths, weaknesses, and resulting biases of each detection method (30 minutes)

3. Open time for questions recapping planet detection and the upcoming midterm (5-10
minutes)

4. Highlights of exoplanet detections (if time remains, finish next class)

Today’s reading is the Wright & Gaudi handout. These will cover the population of detec-
tions from each detection method as of 2011 (the handout is dated), as well as the strengths
and weaknesses of each detection method. The handout is quite long, so it’s okay if you read
just Chapters 1 and 2 for this class (we’ll also cover chapter 3 if you have time to read it).

8.1 Activity: Wright & Gaudi for the modern day

Figure 8.1 below shows my own version of the mass-semimajor axis distribution of ex-
oplanets discovered by transit, RV, microlensing, imaging, astrometry, and timing. In this
activity, we’ll derive the appropriate sensitivity curves for each technique and manually over-
plot them on this diagram, provided I can work the projector properly. Please split into five
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Figure 8.1: Mass vs. semi-major axis of exoplanets discovered by various techniques. Data
from the NASA Exoplanet Archive.
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groups (3 people each). Each of these five groups will work on one of the five key detection
techniques in order to derive approximate mass-semimajor axis detection limits from each
method. When you're done deriving your detection limit, please plot it neatly on the black-
board and be prepared to describe how you derived it to the class on the whiteboard. If you
finish before another group, please go help that group (a couple of these are harder than
others).

1.

8.2

Radial velocity. From the expression in the notes for the radial velocity semi-
amplitude (Equation 2.10), derive an equation for the minimum planet mass as a
function of semi-major axis that can be detected for planets orbiting Sun-like stars
assuming that the minimum detectable RV semi-amplitude is ~ 1 m/s. Over-plot this
line on the class’ plot of planet mass vs. semi-major axis, and label it.

Transit. From the transit depth (Equation 4.9 in the notes), write down a scaling
expression for the minimum detectable planet mass detectable via transit. To do this,
assume that the masses and radii of stars are linearly proportional to one another,
and that all exoplanets have a fixed density. Note that the transit SNR approximately
scales as the transit depth times the square root of the number of photons obtained
during transit events over the survey duration. Then over-plot and label a line on our
class plot for Kepler-like transit surveys on the plot assuming that these surveys have
a threshold capability to detect the transits of Earth-sized planets orbiting Sun-like
stars with semi-major axes of 1 au.

Astrometry. Starting from the expression for astrometric wobble in Equation (3.6) of
the notes, derive the minimum planet mass that is detectable with Gaia as a function
of semi-major axis. Assume that Gaia has a sensitivity of 0.01 mas for the brightest
stars, and further assume that the host stars are Solar-type and that their typical
distances are 10 pc. Over-plot this line on the class’ graph and label it.

Microlensing. Present-day microlensing surveys can find planets with masses of ~
1 Mg around low-mass stars. Assuming that the typical lens star has a mass of 0.5 Mg
and a distance of 4 kpc, with source stars typically located at 6 kpc, determine at which
semi-major axis there should be a minimum in the microlensing sensitivity curve. Then,
assuming that the microlensing sensitivity drops to zero within a factor of ten in semi-
major axis in both directions, over-plot and label the microlensing sensitivity curve on
the class’ plot.

Direct imaging. Use the population of discovered exoplanets with ground-based
direct imaging to motivate a region of parameter space in which direct imaging is sen-
sitive. Specifically, choose a threshold mass above which directly imaged self-luminous
planets are detectable, and a semi-major axis that corresponds to the current inner
working angle of ground-based observatories. Plot a line (or two) on our graph that
boxes in this region where direct imaging from the ground can find planets, and label
it.

Strengths and biases of each detection method

The following discussion is based on Wright & Gaudi (2013).
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8.2.1 Radial velocity
The radial velocity semi-amplitude is (Equation 2.10)

LA M,, sin(7)
K = 2 Al - 3,7 (8.1)
* P

This semi-amplitude is also the signal that we measure in radial velocity, thus the radial
velocity signal-to-noise ratio scales as

(S/N)gy o« P~Y3M,M?3 (8.2)

assuming that M, « M,. Using Kepler’s third law (P o a®? M~'2), the radial velocity

signal-to-noise ratio scales as (S/N)gy o aY2M,M, ">, We can invert this to find the
scaling of minimum mass that can be found for a given signal-to-noise ratio

My min o a>MY? (8.3)

which demonstrates that (ignoring stellar noise) radial velocity is sensitive to lower-mass
planets at smaller separations from lower-mass stars. In reality, M dwarf stars are very noisy
due to stellar activity, leading G and K dwarfs to be the optimal stellar types to search for
planets around with RV surveys.

8.2.2 Transit
The signal for the transit method is the transit depth, as in Equation (4.9),

- (B) »

where a greater number of transits over a given observation timescale increases the signal
relative to the noise. Thus, the transit signal scales as

2 2 1/2
Rya I aM, o R2a~ V2 M3 (8.5)

(S/N)trOCﬁPOCW 032 P

where we have used Kepler’s third law and assumed that R, oc M,, which is valid for
M < Mg. As a result, the minimum detectable planet radius

Rymin o a4 MY (8.6)

Additionally, the transit probability scales as p oc M,a~!. Together, these imply that smaller
planets are more readily detectable via transit at closer separations around less massive stars,
with a slightly weaker dependence on separation and sharper dependence on stellar mass than
radial velocities. However, the transit probability strongly biases the population toward small
semi-major axes due to its inverse dependence on separation. One other important factor
in broad surveys is simply the population of nearby stars, which is heavily weighted toward
low-mass M dwarfs (which make up ~ 70% of the population), further enabling surveys to
find planets around small, cool stars.
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8.2.3 Direct imaging

The imaging signal-to-noise ratio scales directly with the planet-to-star contrast, which
we previously stated for reflected light (Equation 7.4) and thermal emission (Equation 7.2)

(S/N)di7ref oC R§G_2 s (87)

(S/N)diem ¢ RAR?T, T, (8.8)

where the latter assumes that observations are in the Rayleigh-Jeans tail where B oc T
Assuming that the planet is in radiative equilibrium, we can scale the planetary temperature
with the equilibrium temperature 7t oc T.RY?a~V 2 implying that the emission SNR scales

as
(S/N)diem o RER¥ 20712 (8.9)

Direct imaging also requires that the planet is beyond the inner working angle of the in-
strument, with a separation a > Orwad ™', where d is the distance to the system. Thus, in
thermal emission hotter and larger planets around smaller stars at wider separations and
closer distances are more detectable. In reflected light, the inverse-square law causes larger
planets closer to the star (but still beyond the inner working angle) to be more detectable.
There is also an effect from the host star type for reflected light, as planets will have less
reflected light at the same separation around smaller stars. Putting these together, current
surveys are only sensitive to planets with M = Mj,, at wide (2 10 au) separations around
young nearby stars.

8.2.4 Microlensing

Microlensing is most sensitive to planets that have semi-major axes near the Einstein
ring radius of their host stars, which is (Equation 6.10):

MO\ V2 D 1/2 DDy 1/2
Rr ~ 8.1 —_— 5 s . 8.10
£ au(M@) (8 kpc) ( D? ) (8.10)

As a result, the optimal separation of microlensing scales as

Amtopy € MY? (8.11)

but there is no simple way to write down a signal-to-noise scaling as for other methods. The
sensitivity to the host star mass is largely dependent on the event rate, which in turn is
related to how many lenses there are in the line of sight from the observer to the bulge of
the Milky Way, weighted by the host star Einstein ring radius (which scales as MY 2). As a
result, microlensing is most sensitive to planets around stars that are less massive than the
Sun (because they are more numerous), with a peak at ~ 0.5 Mg.

8.2.5 Astrometry

The angular astrometric shift of a host star due to an unseen companion planet is (Equa-
tion 3.6)
M, a M,

a
a My ¢ 12
dM, + M, dM,’ (8.12)

o =
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and thus the signal-to-noise ratio of astrometric detections scales as
(S/N)as oc ad " M,M;* . (8.13)
Inverting this for the minimum detectable planet mass, we find
My min o€ a”'d M, . (8.14)

This implies that astrometry is able to find smaller planets at wider separations and smaller
distances from the observer around less massive stars. There is also a hidden trade-off in
noise, given that less massive stars (which have greater astrometric shifts for a given planet
mass) emit fewer photons, increasing the noise for a given distance.

8.3 Key findings from each detection method

To date (2/20/24), there are 5573 discovered exoplanets, with 4153 discovered by transit,
1075 by radial velocity, 210 by microlensing, 68 by imaging, 54 by timing variations, and 3
by astrometry (see Figure 8.2). There has been a steady increase in RV detections over time,
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Figure 8.2: Cumulative detections of exoplanets since 1992, colored by detection method.
Figure from the NASA Exoplanet Archive.

with transits becoming the dominant method upon the end of the primary Kepler mission
in 2013. There are clear jumps in the transit population between 2013-2014 and 2015-
2016 — these correspond to Kepler data releases from their data processing and validation
pipeline. Both microlensing and imaging have steadily found planets since 2004 and 2005,
respectively, with other methods playing a relatively minor role. Note that here “timing
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variations” corresponds both to pulsar timing and transit/eclipse timing, of which the latter
has been more productive (with 45 planets found by transit/eclipse timing and 7 from pulsar
timing).

These detections span a broad range of mass and period space, as previously shown in
Figure 1.1. Figure 8.3 shows the population of planets as of a decade ago, also as a func-
tion of mass but plotted against the semi-major axis normalized to the snow line, where
ag = 2.7 au M, /M. This normalizes detections as a function of stellar type, enabling more
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Figure 8.3: Detections of planets as of 2011 compared to sensitivity curves from various
detection methods and missions. From Wright & Gaudi (2013).

direct inter-comparison of the entire population of exoplanets. The sensitivity of various de-
tection methods is over-plotted by the shaded regions, displaying the biases of each detection
method. For instance, transit is more favorable at small separations, RV is biased towards
large masses, astrometric shifts are higher for wide orbits, microlensing preferentially finds
planets with projected separations near the Einstein ring radius, and direct imaging can
only currently find massive planets beyond the large inner working angles of ground-based
coronagraphs. We will dig deeper into the sensitivity of each method in Section 8.2, but let’s
first recap the highlights of each of the four most prolific detection methods (RV, transit,
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microlensing, and imaging) to date.
8.3.1 Radial velocity

There are three key inferences from the radial velocity detections of hot Jupiters in
the late 1990s and early 2000s that have stood the test of time. First, hot Jupiters were
inferred to be intrinsically rare, with occurrence rates of ~ 1% or less — long-baseline RV
surveys have proven this to be the case (see next paragraph). Second, gas giant planets
are more common around massive stars (Lovis & Mayor, 2007), which agrees with the basic
expectation that protoplanetary disk masses should scale with stellar mass, allowing more
mass to be incorporated in planets. Finally, as shown in Figure 8.4, gas giants are more
common around stars with a higher metallicity ([Fe/H]). This finding agrees with the basic
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Figure 8.4: The planet-metallicity correlation: stars with a higher metallicity have a greater
number of gas giant companions. Adapted from Fischer & Valenti (2005).
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expectations of the core accretion hypothesis for giant planet formation, as stars with a
greater metallicity should have protoplanetary disks with more metals (including dust and
ices) that can be incorporated as the building blocks of the cores of giant planets. This will
enable proto-giant planets in more metal-rich disks to build more massive cores, allowing
them to be more likely to reach the critical mass to accrete the surrounding H/He gas and
form a giant planet via the core accretion instability. We’ll discuss core accretion in more
detail when we cover planet formation in the following two weeks.

Radial velocity is no longer limited to finding planets with short orbital periods — instead,
now it has found (massive) planets out to orbital periods of ~ 10° days. Figure 8.5 shows
the occurrence rate derived from the ~ 24 year California Legacy radial velocity survey of
719 stars. There is a paucity of hot and warm Jupiters at small semi-major axes < 0.5 au,
but a significant increase in the number of gas giant planets near and beyond the snow
line (a = 1 au). This implies that Jupiter and Saturn-like gas giant planets are relatively
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Figure 8.5: Occurrence rate of gas giant planets from the California Legacy RV Survey.
There is a clear increase in the number of gas giants at wide separations, with hot Jupiters
being relatively uncommon. Adapted from Fulton et al. (2021).

common.
8.3.2 Transit

Transits have provided a wealth of information on a range of planets, from hot gaseous
planets orbiting main-sequence Sun-like stars down to temperate rocky planets orbiting M
dwarfs. Figure 8.6 shows a summary plot of the transit radii of gas giant planets as a
function of equilibrium temperature or, equivalently, incident stellar flux. The radii of warm
gas giant planets are relatively independent of incident stellar flux, but those of hot Jupiters
with equilibrium temperatures in excess of ~ 990 K generally increase with equilibrium
temperature (Laughlin et al., 2011). Additionally, the radii of many gas giants is larger than
theoretical expectations, a “radius inflation” problem that is still unsolved (Fortney et al.,
2021). We will discuss the mechanisms that set the radii of hot Jupiters further when we
cover the internal structure of gas giants in the third part of this course.

Transit measurements, especially with Kepler, TESS, and targeted ground-based surveys,
have provided a wealth of information about planets orbiting stars cooler than our Sun. This
includes the detection of the seven-planet TRAPPIST-1 system (Gillon et al., 2017), along
with a broad range of population statistics that we will cover in Day 10 when we discuss
occurrence rates in more detail. One especially interesting finding of transit observations
is that multi-planet systems appear to pack planets together with similar sizes and orbital
spacing as their neighbors — like peas in a pod. Figure 8.7 shows this “peas in a pod”
pattern for Kepler multi-planet systems around stars that are less massive than the Sun,
though note that this trend continues to multi-planet systems around more massive host
stars. The prevalence of closely packed planets with similar sizes in many systems may
imply that planets migrate inward in the disks in which they form from their formation
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Figure 8.6: The radii of hot gas giant planets increase as a function of incident stellar
flux. Additionally, the hottest gas giant planets (with equilibrium temperatures = 990 K,
see vertical dotted line) have radii that can be larger than those predicted from standard
evolution models (red dashed line). Adapted from Thorngren & Fortney (2018).

locations. We'll discuss this “Type 1 migration” within the protoplanetary disk (Type 2
migration is for gas giant planets that can open a gap in the disk) in the coming weeks.

8.3.3 Direct imaging

Direct imaging has been the only method to find massive, wide-separation planets and
planetary-mass objects® since the initial detection of 2M J1207b in 2005. The primary efforts
in direct imaging in the past decade have been large (hundreds of stars) ground-based surveys,
which have provided information on the statistics of giant planets at wide separations. One
key detection is 51 Eri b (see Figure 8.8), which is the lowest-mass directly imaged planet (2
Mjyp). Nielsen et al. (2019) conducted an occurrence rate analysis on the GPI survey, finding
that directly imaged planets that are still hot from formation are significantly more common
around massive stars with M > 1.5 Mg, while the occurrence distribution around lower-mass
stars is consistent with zero. There is also evidence for a decrease in the number of gas giant
planets with increasing separation from 10 au < a < 100 au, in tentative agreement with
some radial velocity surveys.

8.3.4 Microlensing

Since the initial microlensing discovery of a ~ 1.5 Mj,, planet at ~ 3 au (Bond et al.,
2004), microlensing has found a wealth of massive planets at intermediate separations, along
with approximately a dozen 0.5 —2 Mg, planets. Figure 8.9 shows the light curve and caustic

3Planetary-mass objects are planetary mass (M < 13 M. Jup) but might have formed like a brown dwarf,
via gravitational collapse, rather than bottom-up like a planet.
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Figure 8.8: Detection images of 51 Eridiani b, the lowest-mass planet (2 Jupiter masses)
found via direct imaging, discovered by the Gemini Planet Imager (GPI) Survey. Adapted
from Macintosh et al. (2015).

structure of one of the most important early microlensing events, the discovery of a Jupiter-
Saturn analogue pair orbiting a ~ 0.5 My star at a distance of ~ 1.5 kpc with masses of
0.71 My, and 0.27 My,, separations of 2.3 au and 4.6 au. This discovery clearly displayed
the strength of microlensing, that it probes regions near where the gas giants in our own
Solar System lie. Given that this region is also where the ice lines in protoplanetary disks
are expected to be, there is significant hope for future space-based microlensing with Roman
and beyond.
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Microlensing has also found a population of ~ 30 total free-floating, or “rogue” planets.
Figure 8.10 shows one recent discovery, of a free-floating Neptune-mass planet. There has
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Discovery of a free-floating Neptune-mass planet, showcasing the short dura-
tion of single “rogue” planet lens events. Adapted from Mréz et al. (2018).

been a more recent discovery of a 41.5 minute microlensing event of a Mars-to-Earth mass
rogue planet (Mréz et al., 2020), showcasing the technical capability of current microlensing
surveys. Efforts are ongoing to study the statistics of free-floating planets, with some tenta-
tive evidence for a gap in the occurrence of microlensing planets with angular Einstein ring
radii of 8.8 - 26 micro-arcseconds (Gould et al., 2022).
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9 Detecting exoplanets: occurrence rates
Our agenda for Day 9 is the following:

1. Midterm recap (10 minutes)

2. Recap updates to exoplanet sample in the decade since Wright & Gaudi (10 minutes)
3. Deriving occurrence rates from biases: example of the transit method (30 minutes)

4. Highlights of exoplanet detections (remainder of time, mostly for fun)

Today’s reading is Sections 2.10-2.12, 5.10, 6.25-6.26, and 7.10 of the second edition of our
textbook. If you don’t have the second edition, please read Fulton et al. (2017) (https://
ui.adsabs.harvard.edu/abs/2017AJ....154..109F/abstract) instead, as we'll use that
as an example of how to derive occurrence rates from transit surveys.

Our learning goals for today are:

1. Identify strengths and limitations of our current exoplanet sample.

2. Understand how occurrence rates are derived from a uniform but biased sample of
planets.

3. Become aware of some key moments in exoplanet discovery from the past two decades,
as well as important trends that have been discovered.

9.1 Occurrence rates
9.1.1 General principles

The observed distribution of planets (as shown in Figure 1.1) is strongly biased by the
fact that each detection method is more sensitive to a given region of planetary mass/radius,
separation, and stellar mass parameter space, among other parameters including age and
distance. We previously discussed the general trends of these biases for each detection
method in Section 8.2. These biases must be taken into account in order to back out the
true underlying distribution of planets.

Occurrence rates have been derived individually for each method, some of which (e.g.,
for RV, see Figure 8.5) were discussed previously. In this section, we will focus only on
occurrence rates via transit, but the general principles of backing out occurrence rates from
the observed exoplanet distribution is the same for each detection method. There are three
main steps to deriving occurrence rates from a survey with any given detection method:

1. Sample Selection: Cull the sample of observations in order to limit observational
biases. These include magnitude cuts to only stars that are bright enough to detect
planets around, and cuts in stellar properties and planet properties in order to limit
outliers and/or systems that were included for reasons going beyond having a uniform
survey.
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2. Survey sensitivity: Perform tests on the data in order to quantify the fraction of
planets with given properties (e.g., mass, radius, separation — all of which are connected
to the signal-to-noise ratio of a given method) that are recovered. Use this to derive
the decectability of the survey as a function of the planetary and/or stellar parameters
of interest.

3. Calculate occurrence: Weight the actual detections in the survey by the detectabil-
ity derived in Step (2) in order to calculate the true expected occurrence from the
detections at hand. Analyze these occurrence rates as a function of the planetary
and /or stellar properties of interest.

Generally, reliable occurrence rates are derived from samples that consist of hundreds to
thousands of target stars. In the remainder of this section, we will study occurrence rates
derived from the deepest transit survey done to date, from the Kepler primary mission.

9.1.2 Early results
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Figure 9.1: Comparison of Kepler occurrence rates derived from Howard et al. (2012) (left,
FGK stars), Fressin et al. (2013) (middle, FGK stars), and Dressing & Charbonneau (2013)
(right, for M < Mg). All results agree that planes with R < 3 Rg are the most common.
Note that the samples are incomplete at the smallest radii (shown by the hatched region in
the left-hand panel).

Figure 9.1 compares the occurrence rate of planets (as the number of planets per star) as
a function of planet radius derived from Kepler observations. This compares the results for
planets orbiting FGK stars to periods of 50 days (Howard et al., 2012), FGK stars to periods
of 85 days (Fressin et al., 2013), and small stars with M < Mg (Dressing & Charbonneau,
2013). The most striking finding is that planet occurrence is much larger for smaller planets
relative to gas giant planets. This is not what you would expect from simply looking at the
detections of planets (Figure 1.1) by eye, showcasing how by incorporating the sensitivity
of a given survey one can reveal the true distribution of planets. Note that the Kepler
data shown in Figure 9.1 is incomplete for small planets (R < 1 Rg), so though there is
a clear increase in planets at small radii it is unknown how this extends down to planets
with masses similar to those of Mars or Mercury. Additionally, as we will discuss in the
next section further characterization of the host stars in the Kepler survey has allowed more
detailed constraints to be placed on the occurrence rate distribution as a function of planet
radius.
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9.1.3 Example of deriving occurrence rates: Radius gap

The key limiting factor in the dependence of occurrence rate on planet radius is the
uncertainties in the host star radii, as the observable linked to planet radius (transit depth)
o R;%2 Fulton et al. (2017) improved the uncertainties on the stellar radius using the
California-Kepler Survey sample of 2025 host star spectra, which allowed a reduction in the
stellar uncertainty from typical values of ~ 25% to ~ 11%. We’ll next walk through the
specific steps in the occurrence rate analysis of Fulton et al. (2017).

The first step for any occurrence rate analysis is to cull the sample to limit bias. Figure 9.2
shows the cuts made by Fulton et al. (2017) to their sample of host stars. The first cut is
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to add a filter on stellar radius as a function of temperature (the dashed line in the top
panel of Figure 9.2) in order to remove giants from the survey. The second cut to the stellar
distribution is to remove stars with Kepler magnitudes K, > 14.2 in order to only include
stars that can be well-characterized via follow-up. The third cut to the stellar distribution
is to only include stars with 4700 K < Ty < 6500 K, as this is the range of stars where the
spectroscopic stellar follow-up provides precise stellar parameters.

On top of these cuts to the stellar distribution, the authors also conduct cuts to the
planet candidate distribution (and thus planet host star distribution) as well. The first is
to remove signals that are deemed to be false positives from the sample. The second is to
remove grazing transits with b > 0.7, as the properties of these planets become degenerate
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with the limb darkening parameterization used, and are thus less precise. The last cut
to the planet sample is to limit the orbital period to only P < 100 d in order to ensure
a reasonable signal-to-noise for each candidate. Putting all these cuts, 3 for the stellar
distribution and 3 for the planet distribution, together reduces the initial sample of 2025
stars in the spectroscopic Kepler follow-up (CKS) observations down to 900 stars that are
analyzed to derive occurrence rates.

Step 2 in the occurrence rate calculation is to determine the sensitivity of the survey.
Fulton et al. (2017) use results from a previous injection-recovery study of Kepler host stars
in order to quantify the fraction of signals that are recovered as a function of their signal-
to-noise, which is

R’ T, 1

(S/N); = (R_,Q,ﬂ) Fﬁz ; (9.1)
where 17, and P are the radius and period of a given injected planet, R, ; is the stellar radius
for a star in the Kepler catalog, T; is the observation duration for that star, and Nj; is the
photometric noise for each star given the transit duration included in the injection. The
resulting dependence of the recovery fraction of injected signals on signal-to-noise ratio is
shown in Figure 9.3, along with a best-fit I" distribution function (which the authors call C)
to this histogram. The recovery fraction increases with SNR as expected, with injections
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Figure 9.3: The results of injection-recovery tests for the fraction of injected planet signals
recovered as a function of the signal-to-noise ratio of the planet signal used in Fulton et al.
(2017). The green line is a I' cumulative distribution function (CDF) fit to the recovery
fraction dependence on SNR.

not recovered for (S/N) < 5 and injections generally recovered for (S/N) > 15.
The next step is to convert these recovery probabilities into a completeness fraction of
the survey for a given planet radius and orbital period. To do so, the authors calculate the
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fraction of stars where a transiting planet with a given SNR would be detected

1
Pdet = KZL:C . (92)

This quantity pqe is also called the “completness” of the pipeline, and is shown in the top
panel of Figure 9.4. As expected, the completeness is one for large planets at short orbital
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periods, and drops as the SNR decreases with decreasing radius and increasing orbital period.
In order to then calculate the total detectability as a function of planet radius and orbital
period, the authors also need to fold in the transit probability

R,
Du = 0-77 ; (9.3)

where the extra factor of 0.7 comes from the b < 0.7 cut used in the sample selection. The
authors combine the transit probability and the completeness as a weighting function
1

= ) 94
PdetPtr ( )

W;

which is applies to each planet detection. This weighting function is the “total detectability”
plotted in the bottom panel of Figure 9.4, which differs from the completeness due to the
lower transit probabilities at longer orbital periods.
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Finally, to calculate the occurrence rate in terms of the number of planets per star in
a bin of a given planet radius and orbital period, the authors simply take the sum of the
weights divided by the number of stars in the sample:

Tpl,bin

1
Join = N ; wj (9.5)

Figure 9.5 shows a histogram of the resulting occurrence rate distribution of planetary radii.
The occurrence rate distribution in Figure 9.5 is similar to that shown in Figure 9.1 in that
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Figure 9.5: The resulting occurrence rates from Fulton et al. (2017) as a function of planet
size. Over-plotted on this occurrence rate distribution is the density of planets as a function
of radius from Weiss et al. (2017), which shows a peak near the super-Earth occurrence rate
peak — implying that the occurrence rate gap can be interpreted as a transition from rocky
to gas-rich planets.

the number of planets with R < 4 Rg is much greater than the number of larger gaseous
planets. However, with the improved stellar parameters and corresponding reduction in
planetary radii, there is a clear bi-modality, with two peaks at radii of 1—1.5 Rg and 2—3 Rg,
along with a gap in occurrence rate between these peaks. Over-plotted on the histogram of
occurrence is the inferred density distribution from the sample of RV and TTV mass and
transit radius measurements (Weiss et al., 2017), which shows a peak in density that aligns
well with the smaller-radius peak in occurrence. This implies that planets that are above
this smaller-radius peak in occurrence have a significant volatile component, while smaller
planets are largely rocky. As a result, this divide can be interpreted as a divide between
rocky and gaseous planets, with “super-Earths” at radii smaller than the radius gap (but
larger than Earth), and “sub-Neptunes” at radii above the gap. Specifically, Fulton et al.
(2017) define super-Earths as having radii 1 Rg < R < 1.75 Rg and sub-Neptunes as having
radii of 1.75 Ry < R < 3.5 Rg.
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Given that the derived occurrence rates are a function of both radius and orbital period,
the authors can then convert this distribution to show two-dimensional occurrence rate
maps. Figure 9.6 shows this in radius-instellation space in order to link to theories for what
mechanism could drive this gap in occurrence rate. The existence of a radius gap in the
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Kepler population was actually predicted 4 years before its discovery by Owen & Wu (2013).
The fundamental mechanism that is expected to cause this gap is atmospheric loss, where
low-mass planets more readily lose their primordial H/He envelopes. Sub-Neptunes above
the gap can hold onto their H/He, while super-Earths lose any primary H/He atmosphere.
Importantly, the gap appears to move to smaller radii at lower instellations, which agrees
with the basic expectation that the mechanism driving this loss is linked to the irradiation
— planets that receive more irradiation receive more high-energy stellar photons that can
drive atmospheric loss, and planets that are hotter will have more extended atmospheres
that can more easily be lost to space. At present, there are two competing mechanisms
for the atmospheric loss that carves the radius gap — photoevaporation (loss due to high-
energy stellar photons driving atmospheric escape) and core-powered mass loss (outflows
driven by the cooling of the interior from formation). A key way to differentiate between
these is that core-powered mass loss should not be dependent on the host star type, while
photoevaporation is dependent on the host star type through the stellar spectrum. There
is tentative evidence for a weak dependence of the radius gap on host star type (Berger
et al., 2023), which may point toward core-powered mass loss as the dominant mechanism —
regardless, both mechanisms certainly play a role in the evolution of young, low-mass planets
with H/He envelopes.
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10 Planet formation: disk structure
Our agenda for Day 10 is the following:

1. Star formation recap (5 minutes)

2. Vertical disk structure from hydrostatic equilibrium (40 minutes). As part of this, do
small group derivations to get from hydrostatic balance to disk density profile.

3. Disk flaring (10 minutes)
4. Activity: Estimating disk temperatures (20 minutes)
5. (if time) Start disk thermal structure

We’ll start reading the Armitage lecture notes for today, and will continue for the next two
weeks. Today’s reading is Ch. II A-B of the lecture notes, which covers protoplanetary disk
structure. The reading for next class is Ch. II C-E. Then, next week we’ll cover Ch. IIT A
(Tuesday) and Ch. III B-C (Thursday), and the following week we’ll finish with Ch. IV.

10.1 Vertical disk structure
10.1.1 Hydrostatic equilibrium

Area 84 p(ztAz)

z+tAz
Figure 10.1: Schematic of a parcel of gas in
hydrostatic equilibrium.

A
p)

Figure 10.1 shows a parcel of gas held between z and z+ A at pressure p(z) at the bottom
and p(z+Az) at the top. Newton’s second law (F' = ma) implies that the change in pressure
across Az is the weight per area of the gas:

[p(z + Az) —p(2)]0A = —pgAziA . (10.1)
Thus,
p(z + AAZi —p(2) _ g (10.2)
and given that
i P+ A2) —p(2) _ dp (10.3)




we can write the expression for hydrostatic balance

dp _

— —pg . 10.4
= Py (10.4)

Let’s now apply this to calculate the vertical density structure of a protoplanetary disk.
Figure 10.2 shows the direction of the vertical component of gravity in a geometrically thin

d °z
2y

M

*

r

Figure 10.2: Schematic we’ll use to calculate the vertical component of gravity g, in a
protoplanetary disk from hydrostatic equilibrium. Adapted from Armitage (2007).

disk. In this case, hydrostatic equilibrium in the vertical direction of the disk is

B .. (10.5)
where
g, = g sinf | (10.6)
with G, G,
g= = : (10.7)

d? (r2 4+ 22)
We can thus write the vertical component of gravity g, as

B GM, z _GM*
N () DY/ B R E

We can now use the ideal gas law to relate pressure and density

z. (10.8)

kpT
p="100 2, (10.9)
My
where T
2 =" (10.10)
Ky

is the isothermal sound speed, 1 ~ 2.3 is the mean molecular weight and m, is the proton
mass.
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10.1.2 Activity: Derive disk density profiles in small groups!

We can now derive the density profiles for disks in hydrostatic equilibrium. Follow these
steps, and check in with me after each one.

1. Substitute the ideal gas law and g, into your expression for vertical hydrostatic equi-
librium (Equation 10.5) to express hydrostatic equilibrium as a function of density p
instead of pressure p. Assume z < r to relate dp/dz to the sound speed ¢, height z,
density p, and Keplerian orbital frequency 2 = /G M, /r3.

2. Integrate your expression of vertical hydrostatic equilibrium from 2z’ = 0 to 2/ = z
to derive the dependence of density on height, assuming that the disk is isothermal
(and thus ¢ is constant) and given a mid-plane density at z = 0 of py. Re-write your
expression as a function of the disk density scale height h = ¢4/<Q.

3. Integrate your expression for the vertical density profile of the disk from 2z’ = —o0 to
2/ = +o to derive the total surface density of the disk (i.e., the integrated mass in a
2D column of the disk), which we call . Use this to relate the mid-plane density pg
to the surface density - and scale height h.

We'll have groups come up and derive each part of the solution for the class, and I'll post the
full solutions below (they’re also just commented out on the Overleaf if you want to check).

10.1.3 Disk flaring

The shape of the disk depends on the aspect ratio, h/r. This can be related to the sound

speed and orbital velocity as

h ¢ c

T3 5 Ma ! 10.11

ro Qr vk * o ( )
where vg = 4/GM,/r is the Keplerian orbital velocity and Ma is the Mach number of the
disk at the orbital velocity. If we then assume that the sound speed scales as ¢, oc v, then

h
— oc PP o 126 (10.12)
,

Thus, the aspect ratio h/r will increase (i.e., the disk will “flare”) with r if 8 < 1/2. Given
that ¢; oo /T, then the disk will flare if the temperature dependence with separation is
T oc v~ or shallower. As we will see in our activity, this is expected to be the case, and so

protoplanetary disks are expected to flare.
10.2 Activity: estimating disk temperatures

Protoplanetary disk temperature (and surface density) profiles are often parameterized
as a power-law with separation from the host star r. This activity will walk us through one
limiting case for the dependence of disk temperature on r.

1. Split into 5 groups of 3 people each. Then, calculate the equilibrium temperature of a
dust grain that lies at a given separation r from a Sun-like host star with a radius R,
and a temperature T,. Assume that the dust grain is a sphere with zero albedo and
the same temperature across its surface. Group 1: calculate this value T, at 0.01 au.
Group 2: calculate this at 0.1 au. Group 3: calculate this at 1 au. Group 4: calculate
this at 10 au. Group 5: calculate this at 100 au.
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2. Have one group member post your answer on the log-log plot on the board of dust
grain temperature as a function of separation.

3. Derive a scaling for the dependence of dust grain temperature on semi-major axis.
Compare this to that found for a flared disk thermal profile in Equation (51) of the
Armitage reading.

4. Roughly estimate the condensation temperatures for various species in a disk, first for
a volatile like water (HoO) and then for refractory species like perovskite (CaTiO3)
and/or silicates like enstatite (e.g., MgSiO3). From this, estimate where in the disk
these species would be found in solid vs. gaseous form.
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11 Planet formation: disk thermal structure, dynam-
ics
Our agenda for Day 11 is the following:
1. Flared disk structure (15 minutes)

2. Activity: Estimating flared disk temperatures (15 minutes)
3. Disk dynamics, effective viscosity (30 minutes)

4. Viscosity activity (15 minutes, if time, if not do next class)

Today’s reading is Ch. II C-E of the Armitage notes, which covers condensation and ice
lines, dynamics, and the effective viscosity and angular momentum transport within disks.

11.1 Disk thermal structure
11.1.1 Flared disks

Protoplanetary disks are “flared” (have an aspect ratio that increases with separation
from the host star) due to instellation puffing up the outer regions of the disk. Figure 11.1
shows a schematic of a flared disk.

Angle o between radiation and
tangent to disk surface

r

Fig. 2.4. Geometry for calculation of the radial temperature profile of a flared
protoplanetary disk. At distance r 3> R,, radiation from the star is absorbed by
the disk at height 1, above the mid-plane. The angle between the tangent to the
disk surface and the radiation is .

Figure 11.1: Schematic showing a flared disk along with the flaring angle ov. From Armitage
(2013). T've left his caption in on purpose.

The flaring angle of a disk,

dH H
- _ = 11.1
@ dr r’ ( )

is the angle between the path of incident stellar radiation and the tangent to the disk surface
at a given radius?, where H is the height of the disk from the mid-plane to the disk surface

4o can be derived by drawing two right triangles at a given location, one that has a hypotenuse which

follows the tangent to the disk surface and one that follows the path of incident stellar radiation. The
opening angle of the smaller triangle is dH /dr, while the opening angle of the larger triangle is H/r, where
H is the height of the disk at a given location. Thus, the angle between h and the hypotenuse in the smaller
triangle is /2 — dH /dr, and that for the larger triangle is 7/2 — H/r. Subtracting the smaller angle from
the larger angle, we find a = —H /r + dH /dr, equivalent to Equation (11.1).
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that intercepts starlight (equivalent to h, in the Armitage (2013) notation, but in this part
of the notes I use lowercase h to mean disk scale height). Assuming that the disk is locally
in radiative equilibrium with incoming starlight onto an area A and that the flaring angle «
is small,

L, .
WAsma = AoT}]

L,
42

(11.2)

4
Oé:O'Td,

where Ty is the temperature of the disk. Rearranging, we find

T, = ( Lack )1/4 . (11.3)

dror?

Using the Stefan-Boltzmann law to substitute L, = 47 R?0T*, we can write

T, = 4/&041/4T* : (11.4)
T

Thus, the dependence of the disk temperature is very similar in r, R,,T, to the equilib-
rium temperature we previously derived and (meant to) apply in last class’ activity, with
T, o« 7—Y/2. However, there is an additional dependence on «, as disks that are more flared
have a greater surface area to intercept incident starlight.

11.2 Disk temperature activity: condensation points and ice lines

This activity will enable us to estimate the effect of flaring on disk temperature and the

separations where various species can condense out of the gas and form planetary building
blocks.

1. Split into 5 groups of 3 people each. Each group corresponds to a separation r — Group
11is 0.01 au, Group 2 is 0.1 au, Group 3 is 1 au, Group 4 is 10 au, and Group 5 is 100
au. Calculate the temperature of the disk at this semi-major axis around a Sun-like
star with the effect of flaring. Assume a = 0.05.

2. Have one group member post your answers on the log-log plot on the board of dust
grain temperature as a function of separation, both with and without the effects of
flaring.

3. Assuming a flared disk model with o = 0.05, calculate the separation from the host
star at which rocky material that forms meteorites and the building blocks of rocky
planets can condense. Assume that the condensation temperature of rocky (silicate)
material is 1500 K in typical disk conditions.

4. Assuming a flared disk model with a = 0.05, calculate the separation from the host
star at which water vapor can condense (the “ice line”). Assume that the condensation
temperature of water is 170 K in typical disk conditions.
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5. All of the derivations and calculations above are for the irradiated surface of the disk.
However, as you’ll find in problem set 2, the disk midplane is where we expect most of
the dust to pile up. Do you expect the temperature in the disk interior to be hotter or
colder than the surface, and why? How does this impact what materials can condense
at the midplane?

11.3 Disk dynamics
11.4 Momentum balance
The radial force balance for the gas in a protoplanetary disk is largely between three

forces: the centrifugal force, pressure gradients, and gravity. We can express this as

2

i, GM. _,dp

—= = — 11.5
r 2 P g (11.5)

where vy, is the orbital velocity of the gas. Importantly, dp/dr < 0, which implies that the
velocity of the gas will be sub-Keplerian. Assuming that the pressure in the disk follows a

power-law as
r —n
P =Dpo (—> , (11.6)

where py = poc?, we can substitute this into the force balance to find

v 02 7”_“_1
.9 K -1 2
== = = cin . 11.7

Multiplying through by r and assuming that r and p are taken near the fiducial radius and
density rg and pg, we find

Uig =v% —nc? (11.8)
and rearranging
2
Vpg = VK 1-— n—; . (119)
Uk
Note that ¢, = hS2, so nc? /v = nh*Q?/v% = nh?/r?, and as a result
2
Vgg = UkA[L — ng- (11.10)

For a typical disk with h/r = 0.05 and n = 3, vs, = 0.996vk. Thus, the effect of pressure
gradients on the gas motion is relatively small and can be neglected for many of our purposes.
However, we will come back to this next week, as it will be critical for determining the motions
of intermediate-sized dust grains in the disk, as they move at Keplerian speeds while the gas
is slightly sub-Keplerian.
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Figure 11.2: Pringle solution for the diffu-
sive spreading of a disk with a constant viscos-
ity outward from a thin ring. Adapted from
Armitage (2007).

av] w

—_

% (arbitrary units)

[l N N N N e

o

r/ r,

11.4.1 Effect of viscosity

Viscosity is a measure of the resistance of a fluid that is being deformed by stresses.
We have ignored viscosity thus far, but it is of critical importance for the evolution of disks.
This is because viscosity leads to angular momentum transport that redistributes the angular
momentum in the disk (as some parcels of gas fall into the star, and some move outward)
and contributes to disk evolution and eventual dissipation (see Figure 11.2). Importantly,
this dissipation is measured to take < 10 Myr, with a mean disk lifetime of 3 — 5 Myr.

Molecular collisions generate a viscosity in a flow due to the finite mean free path of the
gas. We can estimate the molecular viscosity of a fluid as

Vi = ACs (11.11)

where )
A= 11.12
NOmol ’ ( )

is the mean free path with n the number density and o, the cross-section for molecular
collisions. Given that we can re-write the number density n = p/(um,) and have previously
shown that the typical density py = X/(v/27h), we can write the mean free path as

pm, N 2mpumyh

A= 11.13

po ZO-mol ( )
We can then write the molecular viscosity as
V2

o~ YTy (11.14)

2 Omol

11.4.2 Viscosity activity

This activity will help us understand whether molecular viscosity can serve as the mech-
anism for angular momentum transport in protoplanetary disks. First, note that the typical
timescale for viscous transport can be written as

T2

= —. 11.15
n=C (11.15)
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1. Calculate the viscous timescale for a disk from Equation (11.14) at 10 au, assuming it
is comprised of a molecular solar composition gas (u ~ 2.3). Use the Hayashi (1981)
prescription for surface density of an MMSN,

ro\—3/2

Y= 1.7x 10° g em™2 ( ) . (11.16)
1 au

Further assume that the sound speed at 10 au is ¢, ~ 0.5 km s}, and that the collision

cross section is ome ~ 2 x 107 em?. Compare the timescale you calculate to the

typical timescale for disk evolution of a few Myr.

2. Clearly we need a higher level of viscosity to cause disks to evolve on reasonable
timescales. Calculate the required minimum v to lead to disk evolution at 10 au,
assuming a viscous evolution timescale of 10 Myr.

3. Let’s assume that our expression for v, was incorrect. Instead, let’s re-write it as

v = ahcs , (11.17)

where « is a free parameter that replaces the combination of quantities (@) in
Equation (11.14). Calculate the required o to reach a viscous evolution timescale of

10 Myr at 10 au using your solution from part (2).
11.4.3 Shakura-Sunyaev disks

It’s clear from the activity that molecular viscosity cannot lead to disk evolution. One
important consequence of a small molecular viscosity is a large Reynolds number,
UL
Re = — | (11.18)

v

where U is a typical velocity scale and L is a typical length scale. If we take U ~ ¢, and
L ~ h and h/r = 0.05, we find that the typical Reynolds number at 10 au is ~ 10'°. This
is a very large number, which implies that the flow will be very turbulent, with molecular
viscosity largely irrelevant to the bulk of the fluid motions.

One possibility for the source of viscosity in disks is that it is caused in itself by the
turbulence of the disk, which leads to mixing of neighboring fluid elements that acts as an
effective viscosity. We can estimate that this effective viscosity will be limited to velocities
smaller than the sound speed ¢, (higher velocities lead to shocks and resulting dissipation),
and scales less than the disk scale height h (which is generally the smallest physical scale in
the disk). Thus, we can write the turbulent viscosity as

v = acsh , (11.19)

where « is a dimensionless value, known as the Shakura-Sunyaev « parameter (note that
this is not the disk flaring angle!®). Note that this expression is equivalent to the modified
version of Equation (11.14) we used in our activity. The value of « is a priori unknown, with
typical values ranging over orders of magnitude from 107% — 107! depending on the source
of turbulence in the disk.

5Sorry, I'm sticking with traditional notation, where they are both a. So it goes.
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12 Planet formation: dust and pebble motions
Our agenda for Day 12 is the following:

1. Recap viscosity, viscosity activity (25 minutes, see Day 11 notes)
2. Dust drag regimes, coupling (15 minutes)
3. Radial drift intro (10 minutes)

4. Radial drift derivation activity (remainder of class)

Today’s reading is Ch. IIT A of the Armitage notes, which covers planet formation, starting
with the interaction of dust and gas in the protoplanetary disk.

12.1 Dust motions
12.1.1 Epstein and Stokes drag regimes

Dust particles moving in a disk feel an aerodynamic force from the gas that opposes the
motion of the dust particles. This force is directly proportional to the cross-sectional area
of the dust grain 7s? as well as the relative velocity of the dust grain to the gas disk v,

1
FD = —§CD7T82,0V2 3 (121)

where p is the gas density, C'p is a drag coefficient, and boldface stands for a vector.
For small particles with a size less than the mean free path of gas molecules (s < \), the

coefficient for this “Epstein drag” regime is
S{UN
Cp=—— 12.2
P gy (12:2)

where the mean thermal velocity in the gas

|8kpT 8
Ui = B- _ \/jcs . (12.3)
UM, T

Thus, the drag force in the Epstein regime is

4
Fp = —%pSQUthV ) (12.4)

Conversely, particles with a size much greater than the mean free path (s = \) lie in a
“Stokes drag” regime. In this case, the drag coefficient C'p depends on the Reynolds number

of the particle,
250
Re = —, (12.5)
Vm
which expresses the ratio between the advection of the particle by fluid motions and diffusion
by molecular viscosity. Practically, the Stokes drag coefficient can be written as a piecewise

function of the Reynolds number
Cp ~ 24Re™ ' Re < 1
Cp ~ 24Re™ "% 1 < Re < 800 (12.6)
Cp ~ 0.44,Re > 800 .
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Thus, the Stokes drag can be determined for a given Re by inserting this piecewise for-
mulation for the drag coefficient in Equation (12.1). Note that the Epstein and Stokes drag
coefficients are equivalent for s = 9\/4, which is the transition size between regimes (Epstein
drag at smaller s, and Stokes drag at larger s).

12.1.2 Dust coupling and settling

Small dust particles are tightly coupled to the gas, while very large particles are not
affected by gas drag. We can quantify how tightly coupled the gas and dust in the disk is
by defining a friction time scale for a dust particle of mass m

muv

— 12.
iy (127)

tfric =

which in the Epstein drag regime for a given density p,, = m/(4/37s3) corresponds to

te = Pm 2 (12.8)

P Uth

Assuming p = 107 g em™3, p,, = 3 g em™2, vy, = 10° m s=! (appropriate for a = 1 au),
and s = 1 pm, we find tg. = 3 s, implying that micron-sized dust particles are very closely
coupled to the gas.

In reality, though small dust particles are tightly coupled to the gas in their horizontal
motions, they are not perfectly coupled to the gas in the vertical direction due to the vertical
component of the stellar gravitational force. Figure 12.1 shows a calculation of vertical
settling (top) and coagulation (bottom) of a particle as it sinks toward the midplane and
grows by coagualting with other particles. Typical settling velocities for small micron-sized
particles are ~ 10° yr, but the settling velocity scales with particle size — thus, larger particles
settle toward the midplane more quickly. We’ll derive this settling velocity and settling
timescale dependence on particle size (and other properties) in problem set 2.

12.1.3 Radial drift: derivation activity

Dust in the disk will drift radially due to interactions with gas. Small particles (s < 1 cm)
are well-coupled to the gas, so they orbit the star at a velocity slightly smaller than the
Keplerian velocity (recall Equation 11.10),

12
Vpg = Vr\| 1 —n— =vKr/1 -1, (12.9)
r

where n = nc?/vZ, with n the power-law exponent for the radial pressure dependence.
Because small particles orbit at this slower velocity, they will not be in radial force balance
like the gas because the gas has pressure support (i.e., a pressure gradient term in the force
balance) while the dust does not. This causes small dust grains to spiral in toward the host
star at a radial terminal velocity. Conversely, large “rocks” with s = 1 m feel gas drag
because their orbits are Keplerian, while those of the gas are sub-Keplerian. This causes an
effective headwind that removes angular momentum from the orbit of the rock, causing it
to drift inward.
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Figure 12.1: Calculation of vertical settling and resulting growth of particles in the proto-
planetary disk. The solid line corresponds to s = 1 pm, the dashed line to s = 0.1 pum, and
the long dashed line to s = 0.01 um. Adapted from Armitage (2007).

We can formalize these two concepts by writing a specific force balance for particles (of

any size, with a given stopping timescale tg;i.) in the radial and azimuthal directions. In the
radial direction,
dv, U?ﬁ 9 1
it v T
where v, is the radial velocity of the particle, the first term on the RHS is the centrifugal
force, the second term on the RHS is gravity, and the third term on the RHS represents gas
drag. The azimuthal force balance is only dependent on gas drag,

(UT‘ - Ur,gas) 3 (1210)

d(rvy) T
_ V) | 12.11
o 7 (Vs ~ Vo gas) (12.11)

where vy is the azimuthal velocity of the particle.

We can now use these statements of radial and azimuthal force balance for dust particles
to derive the radial velocity (toward/away from the star, not to/from Earth!) of dust particles
in the disk. Please do so in small groups of 2-3, following these steps:

1. First, simplify the azimuthal equation (Equation 13.3) by assuming that the particle
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spirals in through a succession of nearly Keplerian orbits, i.e.,

d(rve) ; d(rvg) vk .

I

dt "dr 2

(12.12)

Plug this into the expression for azimuthal force balance to find an expression for
(Vg — Vo,gas)-

2. Simplify the radial equation (Equation 13.2) by substituting in v% = Ui,gas + nu% and
Q2%.r = v /r. There will be two terms on the right hand side of this equation relating
to the azimuthal velocity, make the following first-order assumption that the gas and
dust motions are similar

2 2
Ys _ Vpgas _ (Vg + Vg,gas) (Vg — Vg,gas) ~ 20 (Vg — Vg,gas) (12.13)

T r T T

to write the radial velocity equation for the dust to first-order accuracy.

3. Assume that there is no radial acceleration of the dust (2= ~ 0) and use (vy — Vg gas)
from the azimuthal force balance to derive the dependence of the radial velocity on
VK, tfrica Ur,gas, 1]-

4. Re-cast the radial velocity by defining a dimensionless stopping time Tqic = ticQx =
thicVk /T to write v, as a function of Tiic, Uy gas, Vi, 1.

5. The radial drift velocity peaks at i ~ 1. What is the peak radial velocity, as a
function of n, vg?

6. Assuming Epstein drag, what typical particle sizes does the peak radial velocity of a
dust grain correspond to?

Solutions to your derived expression for particle radial velocity as a function of dimen-
sionless stopping time are shown in Figure 12.2.

12.1.4 The “meter-size barrier”

The fast radial drift velocities of 10 cm - 1 m particles in the protoplanetary disk corre-
sponds to an inward drift timescale of ~ 10 — 1000 years, increasing with radial separation
from the host star. This implies that grains of this size are lost to radial drift over very short
timescales — which necessitates mechanisms that rapidly concentrate meter-sized grains to
form planetesimals. It also implies that radial drift will be common, and can potentially
lead to build-up of material in the disk if pressure maxima occur, causing both radial inward
drift from farther separations and outward drift interior to the pressure bump (see Figure
12.3). In practice, it is expected that dust rapidly coagulates into planetesimals through
two-fluid (dust-gas) instabilities, for example the “streaming instability.” In this instability,
dust forms a thin, dense mid-plane layer with a dust density comparable to the gas density,
leading to clumping of particles that grow and collapse under self-gravity to form planetesi-
mals. This mechanism (and related fluid instability mechanisms) can allow for rapid growth
of grains from the tens of cm to hundreds of m scales over short timescales required to bypass
the meter-size barrier for planet formation.
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Figure 12.2: Radial drift velocity
of particles at the midplane as a
function of the dimensionless stop-
ping time. The most rapid inward
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corresponds to a stopping time of
Q)" — particles in the 10 em - 1
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Figure 12.3: Schematic of how pressure maxima in a protoplanetary disk can cause the
formation of dust rings due to radial drift and resulting pile-up of material. Adapted from

Armitage (2007).
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13 Planet formation: from pebbles to planets
Our agenda for Day 13 is the following:

1. Radial drift derivation activity (45 minutes)
2. Planetary accretion: Hill radius, isolation mass (30 minutes)
3. Gravitational focusing intro (if time)

Today’s reading is Ch. III B-C of the Armitage notes, which covers planetary accretion from
planetesimals and gas giant formation.

13.1 Radial drift activity

We’ll start today’s class by doing the promised activity solving for the radial drift of dust
in the disk. I'm reproducing the text here so you don’t have to look at the notes for Day 12,
but please refer to them for more information.

Dust in the disk will drift radially due to interactions with gas. Small particles (s < 1 cm)
are well-coupled to the gas, so they orbit the star at a velocity slightly smaller than the
Keplerian velocity (recall Equation 11.10),

12
Vpg = Vr\| 1 —n— =vr/1 -1, (13.1)
r

where n = nc?/v%, with n the power-law exponent for the radial pressure dependence.
Because small particles orbit at this slower velocity, they will not be in radial force balance
like the gas because the gas has pressure support (i.e., a pressure gradient term in the force
balance) while the dust does not. This causes small dust grains to spiral in toward the host
star at a radial terminal velocity. Conversely, large “rocks” with s = 1 m feel gas drag
because their orbits are Keplerian, while those of the gas are sub-Keplerian. This causes an
effective headwind that removes angular momentum from the orbit of the rock, causing it
to drift inward.

We can formalize these two concepts by writing a specific force balance for particles (of
any size, with a given stopping timescale tg;.) in the radial and azimuthal directions. In the
radial direction,

dv, U; 1

i Q2r — tf—_(vr — Upgas) s (13.2)

where v, is the radial velocity of the particle, the first term on the RHS is the centrifugal
force, the second term on the RHS is gravity, and the third term on the RHS represents gas
drag. The azimuthal force balance is only dependent on gas drag,

d(rvy) r
it it (Vg — Vp,gas) (13.3)

where vy is the azimuthal velocity of the particle.

We can now use these statements of radial and azimuthal force balance for dust particles
to derive the radial velocity (toward/away from the star, not to/from Earth!) of dust particles
in the disk. Please do so in small groups of 2-3, following these steps:
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1. First, simplify the azimuthal equation (Equation 13.3) by assuming that the particle
spirals in through a succession of nearly Keplerian orbits, i.e.,
d(rvy) drvg) vk

~ _ . 13.4
a U ar 2 (13.4)

Plug this into the expression for azimuthal force balance to find an expression for
(V5 — Vo,gas)-

2. Simplify the radial equation (Equation 13.2) by substituting in vk = v}, + 73 and
O2%.r = v /r. There will be two terms on the right hand side of this equation relating
to the azimuthal velocity, make the following first-order assumption that the gas and
dust motions are similar

2 2
Yo _ Upgas _ (Vg + Vg .gas) (Vg — Vg gas) ~ 20k (Vg — Vg gas) (13.5)

r T r r

to write the radial velocity equation for the dust to first-order accuracy.

3. Assume that there is no radial acceleration of the dust (%= ~ 0) and use (vy — Vg gas)

from the azimuthal force balance to derive the dependence of the radial velocity on

VK, tfric; Ur,gas; 1]-

4. Re-cast the radial velocity by defining a dimensionless stopping time Tqic = tic2x =
thicVk /T to write v, as a function of Tgic, Uy gas, Vi, 1.

5. The radial drift velocity peaks at i ~ 1. What is the peak radial velocity, as a
function of n, vk ?

6. Assuming Epstein drag, what typical particle sizes does the peak radial velocity of a
dust grain correspond to?

13.2 Accretion of planetesimals

Once planetesimals of sizes of hundreds of meters to hundreds of km form, they grow
to form terrestrial planets and giant planet cores via accretion of material. The gas disk
no longer regulates the radial motion of these planetesimals, and instead the physics of
accretion is purely Newtonian. Effectively, the formation of planets from planetesimals
requires studying the process of an up to hundred million year long “cascade” of pairwise
accretion of solid bodies.

13.2.1 Gravitational focusing

A massive object will deflect the paths of other bodies toward it, increasing its effective
cross-section for collisions. Figure 13.1 shows how gravitational focusing of two objects can
cause them to collide, even from trajectories which otherwise would not collide without the
effects of mutual gravity. It can be shown (activity in the next class) that the effective
cross-section for collisions of two bodies with mass m is

2

I = 7R <1 + 1;2> =7R2(1+0) , (13.6)
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Figure 13.1: Schematic of how gravitational focusing enhances accretion. Objects with
a mass m and velocity o/2 are deflected by gravity with an impact parameter b, causing
accretion. Adapted from Armitage (2007).

where R, is the sum of the radii of the two objects, ves. is the escape velocity of the two
objects when they contact (i.e., v, = 4Gm/R,), and o is the relative velocity of the two
objects before they begin to gravitationally interact. 6 = vZ_/o? is the Safronov number,

which determines the extent of gravitational focusing of the two bodies.
13.2.2 Hill radius

The Hill sphere is the region within which the gravitational force of a planet (or proto-
planet) dominates over the tidal gravitational field of the star. The radius of the Hill sphere

15 1/3
M,
— 13.7
= (3]\/[*) ’ ( )

where a is semi-major axis and M, and M, are the mass of the (proto)planet and star,
respectively. The Hill sphere roughly demarcates the region around the (proto)planet within
which it can gravitationally attract particles and accrete them.

13.2.3 Isolation mass

We can use the Hill sphere to estimate the mass of a protoplanet that has accreted all
of the planetesimals in its vicinity. This is equivalently known as an object growing to its
“isolation mass.” An object can only accrete planetesimals whose orbits lie within its feeding
zone Aa, which extends some multiple of Hill radii C'r, from the planet,

Aa =Cry, . (13.8)

A typical value of C = 24/3, derived from the maximum separation for which collisions
between a planetesimal and protoplanet are possible in the three-body problem (Armitage,
2013). The isolation mass is then the mass of planetesimals in the feeding zone of the
protoplanetary disk

Mo\ /3
Mg = 2ma - 2Aa¥, = 4na®C <3M> I (13.9)
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where we have used da ~ ry and X, is the column mass of planetesimals in the disk,
approximately 0.013 (i.e., 1/100th of the total column mass). Solving for the isolation mass,
we find 8

Mgy = 7§w3/203/2M;1/223/2a3 : (13.10)

For typical disk values, at 1 au M, ~ 0.1 Mg, and at 5 au Mi,, ~ 10 Mg. This implies
that terrestrial planets must grow to Earth-like masses through accretion between planetary
embryos (each of which are ~ 0.1 Mg), while the isolation mass for Jupiter corresponds to
the approximate expected mass of a giant planet core.
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14

Planet formation: accretion, orbital migration and
evolution

Our agenda for Day 14 is the following:

1.
2.

3.

Gravitational focusing activity (30 minutes)
Terrestrial planet formation (15 minutes)

Giant planet formation (15 minutes)

4. Nice and Grand Tack Models (15 minutes)

Today’s reading is Ch. IV of the Armitage notes, which covers the evolution of planetary
systems and the Nice model.

14.1 Gravitational focusing activity

Please work on this activity in small groups of 2-3, and be prepared to write your solutions
on the board. Figure 13.1 shows a schematic of the gravitational focusing of two masses with
mass m that collide from an initial impact parameter b and initial velocities each of ¢/2.

1.

Assuming energy conservation, write down an expression that equates the initial kinetic
energy of the objects with the sum of their kinetic energy and gravitational potential
energy at closest approach. Assume that their velocity at closest approach is v. and
their separation at closest approach is R..

Assuming angular momentum conservation, derive an expression for v, as a function

of b and R..

Substitute your expression for v, into part (a) to derive an expression for the largest
impact parameter b that will lead to a collision between the objects, given that the
sum of the radii of the two objects is R;.

Re-arrange this expression to determine the cross-section for collisions I' = 7wb? as a
function of R, the mutual escape velocity of the objects at the point of contact veg,
and the sum of the initial velocities o.

Estimate the effective cross-section for collisions of two embryos with masses and radii
equal to that of Mars (M ~ 0.11 Mg, R ~ 0.53 Rg), assuming a relative velocity at
infinity o = 100 m s™!. Compare this to the physical cross section of each object.

14.2 Steps in the formation of terrestrial planets

The formation of terrestrial planets can be separated into five main stages:

1.

The agglomeration of small (starting with sub-micron-sized) dust particles to form cm-
m sized “pebbles.” The coagulation of dust is mediated by electrostatic forces, which
allows dust to grow to pebbles via pairwise collisions.
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2. The growth of dust and pebbles to planetesimals. This requires a bypass of the meter-
sized barrier, which likely occurs through some form of gravitational instability of
solid material in the disk, perhaps mediated by the streaming instability. Once these
planetesimals form, they can rapidly grow through accretion of pebbles due to radial
drift and gravitational focusing.

3. Runaway growth of the largest planetesimals to become planetary embryos, with a
resulting phase of oligarchic growth where embryos grow more slowly until they reach
the isolation mass. At this point, each embryo has accreted all material in its feeding
zone.

4. Collisions between planetary embryos result in growth of planets to their final masses.
The final giant impact between planet and embryo is the point at which the formation
of the planet has ceased, and evolution has begun.

14.3 Formation of gas giant planets

Forming a gas giant planet requires an enormous amount of pairwise accretion of rocky
bodies and later gas accretion. Figure 14.1 summarizes the challenges in the formation of gas
giant planets from micron-sized dust bunnies — the total mass growth is a factor of ~ 10%2!

pm dust 50 km planetesimal

mass growth
x 1033

mass growth
x 10°

Figure 14.1: Stages in the growth of planets from micron-sized dust bunnies to Jupiter-like
masses. Figure courtesy Andrew Youdin.

14.3.1 Gravitational instability

One possible mechanism to form a giant planet is through local collapse of a gravitation-
ally unstable disk. This mechanism can only work in massive and/or cold protoplanetary
disks, which are gravitationally unstable on a large scale, leading to instabilities that result
in clumping of material and resulting collapse (see Figure 14.2). Gravitational instability of
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Figure 14.2: Clumping of a gravitation-
ally unstable protoplanetary disk. Figure
adapted from Boss (2011).

a disk is only possible if the Toomre Q parameter is sufficiently low

R Y)

= <1,
@ TG

(14.1)

where the dependence on ¢;/% implies that only cold, massive disks will have @ < 1. A
second criterion for gravitational collapse to form a planet (rather than just a gas and dust
clump) is that the collapsing clump be able to cool on a timescale shorter than the collapse
timescale

Teool < Ti- (14.2)

This latter criterion is challenging to satisfy, as the radiative cooling timescale scales as
¥/T? — the opposite dependence of the Toomre Q parameter on ¥ and T'! Thus, if a disk is
sufficiently massive and cool to be gravitationally unstable, it is also likely to be locally too
massive and cool to efficiently radiatively cool. This will then prevent a clump from collapsing
and forming a planet. Because cooling is required to accrete, it is expected that gravitational
instability generally forms objects more massive than planets (i.e., brown dwarfs), and it is
not expected to be the dominant gas giant formation mechanism.

14.3.2 Core accretion

Core accretion is the widely accepted theory of gas giant formation at present. Core
accretion is a bottom-up mechanism to form gas giant planets, with three stages outlined
in Figure 14.3. The first stage of core accretion is for a massive rocky core to form near
its isolation mass, similar to the process of terrestrial planet growth. This core will grow
massive enough that it will then accrete some gas from the protoplanetary disk, and further
grow via accretion of planetesimals and pebbles. Once this core hits a “critical core mass,”
it will then undergo runaway gas accretion from the protoplanetary disk, rapidly growing
to a Jupiter-like mass. The critical core mass is expected to be ~ 10 Mg for typical disk
conditions. This is significantly larger than the masses that rocky objects can grow to in the
MMSN, resulting in the need for incorporation of ice in the formation of a giant planet core.
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Figure 14.3: Schematic of the stages of the
core accretion model for the formation of gas
giant planets. Adapted from Armitage (2007).

increasing time, planet mass

As a result, the standard model for giant planet formation includes growth of a core outside
the snow line in the protoplanetary disk.

Figure 14.4 shows the classic model of core accretion from Pollack et al. (1996). This
simulation finds the same three main stages of gas giant formation: initial growth of a core,
hydrostatic accretion of gas and planetesimals, and then runaway (non-hydrostatic) growth
by accretion of gas from the protoplanetary disk. The key challenge in the core accretion
paradigm is reaching the critical core mass quickly, as the gas disk is expected to be lost by
3-5 Myr in most systems. This can be accomplished by reducing the opacity of the gas, which
reduces the needed critical core mass for runaway. Another possibility is pebble accretion,
which rapidly grows the core mass through radial drift of grains.

14.4 Migration

There are three main mechanisms through which planets can undergo orbital migration
(i.e., have a changing semi-major axis with time) during the epoch of planet formation.

14.4.1 Type I migration

Type I migration causes the radial motion of approximately Earth-mass planets through
protoplanetary disks. In Type I migration, the planet exerts a negligible influence on the
gas in the disk, with torques from the disk controlling the motion of the planet. Type I
migration arises due to net torques that arise from Lindblad resonances risen on the planet
from the disk interior and the disk exterior to the planet. These Lindblad resonances occur
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Figure 14.4: Simulation of the growth of a giant planet by core accretion. The solid line
shows the evolution of the mass of the core, the dashed line the mass of gas, and the dotted
line the total planet mass. Adapted from Pollack et al. (1996).

(for Keplerian orbits) when the angular frequency of the gas is at some integer multiple of
the difference between the angular frequency of the gas and the angular frequency of the
planet, resulting in the planet gaining angular momentum from interior Lindblad resonances
(driving the planet outward) and losing angular momentum from outer Lindblad resonances
(driving the planet inward). Generally, the Lindblad resonances exterior to the planet are
dominant, resulting in a net torque that causes inward migration of the planet.

14.4.2 Type II migration

Type II migration occurs when a planet is sufficiently massive that it opens a gap in the
disk. There are two conditions for gap opening, first that the Hill radius of the planet is
greater than the scale height of the disk (rg 2 h), and secondly that the torques removing
gas from the disk are faster than the action of viscosity to diffuse the gas back into the
disk, which requires a planet-to-star mass ratio ¢ = 10~*. Figure 14.5 shows the planet-disk
interaction in the regime where the planet has opened a gap, with streams of gas that are
flowing onto the planet from the inner and outer regions of the disk. Type II migration
occurs from planet-disk interactions because the orbital evolution of the planet is directly
coupled to the evolution of gas in the disk, the latter of which is controlled by viscosity.
This causes the massive planet to follow the sense of gas motion, which is generally inward
(toward the star) in regions of the inner disk near the snow line where giant planets are
expected to form. However, unlike Type I migration, Type II migration need not be inward
— at sufficient distances from the star, it may lead to outward migration of gas giant planets.
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Figure 14.5: Simulation of
a gas giant planet that has
opened a gap in the protoplan-
etary disk, with resulting in-
teraction with the disk causing
it to migrate inward. Adapted
from Armitage (2007).

14.4.3 Planetesimal disk migration

Even after planets form and migrate within the disk through Type I or II migration in
a given system, it is likely that planetsimals will remain in the system that have not been
incorporated into planets. This planetesimal disk can gravitationally interact with the planet,
leading to individual planetesimals being scattered either outward or inward by a planet.
Each individual scattering event must conserve angular momentum, so outward scattering
of a planetesimal leads to inward migration of a planet, and vice versa. Importantly, the
process of planetesimal disk migration can last far longer than the processes of Type I
and II migration, which are limited to occur only during the lifetime of the gaseous disk.
Planetesimal disk migration is expected to have occurred in our Solar System, leading to
a dynamical instability of the gas giant planets and resulting disruption of our system’s
nascent planetesimal belt.

14.5 Models for Solar System evolution

The Nice model (named after Nice, a seaside city in southern France) is an umbrella
term for a variety of dynamical models which predict that our Solar System underwent
a large-scale dynamical instability a few hundred Myr after its formation. These models
assume that the orbits of the gas and ice giants in the Solar System began more compact
than today, with Uranus and Neptune notably at semi-major axes approximately half their
present values. Due to Type II migration, Jupiter and Saturn migrate to be in a near-
resonant configuration. Then, due to interaction with a planetesimal disk beyond Neptune
(encompassing and slightly inward of the current location of Kuiper Belt Objects), the
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resonant chain between Jupiter and Saturn (and perhaps Uranus and Neptune) is broken,
leading to scattering between the giant planets. This drives rapid outward orbital evolution of
Uranus and Neptune, scattering the planetesimal disk, leading to the ejection of a significant
portion of this planetesimal disk, with some of it scattered inward, perhaps leading to some
of the last large impact basins on the Moon. The remaining objects in the planetesimal disk
comprise our current suite of Kuiper Belt Objects, including Pluto, Charon, and Arrokoth.

There are variants of the Nice model that incorporate additional processes which are of
interest. One variant of the Nice model includes a fifth gaseous planet in the outer Solar
System, approximately the mass of Uranus or Neptune. This additional ice giant is theorized
to have been lost from the Solar System due to planet-planet scattering and would now be
part of the population of free-floating planets. Another variant is named the “Grand Tack”
model, and assumes that Jupiter underwent inward Type II migration before this late-stage
scattering event, moving inward to ~ 2 au and then back outward. The Grand Tack model
improves upon the Nice model by further explaining the deficit of material in the asteroid
belt as well as the low mass of Mars, which is effectively a stranded planetary embryo.
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15 Exoplanet atmospheres: structure, composition,
chemistry, loss
Our agenda for Day 16 is the following:

1. Recap atmospheric structure, dry and moist adiabats (15 minutes)
2. Stratified atmospheres: radiative relaxation, radiative timescale activity (30 minutes)
3. Atmospheric composition and chemistry (20 minutes)

4. Atmospheric loss, cosmic shoreline (10 minutes)

Today’s reading is Sections 3 and 5 of the Zhang Atmospheres on Exoplanets and Brown
Dwarfs review paper. This will cover atmospheric loss (Section 3) and atmospheric compo-
sition (Section 5). I'm including material that Dr. Lothringer covered in Day 15 in these
notes as well for completeness.

15.1 Hydrostatic equilibrium

Recall from our discussion of disks that hydrostatic balance, where pressure gradients
balance gravity, implies that the variation of pressure with height is (Equation 10.4):
dp
— =—pg . 15.1
o= P9 (15.1)
This balance applies equally well to disks and atmospheres. Note that if we integrate this

equation vertically assuming constant gravity, we find that the surface density (i.e., mass
per area) in a given atmosphere column increases with pressure and decreases with gravity

S (15.2)
area g

We can use the ideal gas equation to relate p to p, here in a format often used in

atmospheric science
p = pRT, (15.3)

where R = R, /(qm,) is the specific gas constant, which depends on the atmospheric species
of interest, with R, = 8.3145 J mol™! K~ the universal gas constant. Substituting this into
the expression for hydrostatic equilibrium and integrating, we find

1dp g

pdz RT
P g,
In{—) = —J ——dz 15.4
(po) 20 RT ( )

. Jz g d , . Jz dZ/
= Xp | — ——az | = Xp | — —
P = Po €Xp N RT Po €Xp . R

where H = RT'/qg is the pressure scale height. For an isothermal atmosphere, the expression
for hydrostatic equilibrium simplifies to

p = poe ", (15.5)
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and thus the pressure (and density, for an isothermal atmosphere) decreases with increasing
height over a characteristic e-folding distance of H. Figure 15.1 shows that as expected,
in Earth’s atmosphere the dependence of pressure and density on height is approximately
exponential.
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Figure 15.1: U.S. standard atmosphere
of Earth. Shown are pressure, density,
and temperature profiles for typical Earth
climate conditions.
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However, the dependence of temperature on height is not so straightforward — for Earth
there are multiple atmospheric levels, defined by the temperature gradient. The region near
the surface where the temperature decreases with increasing height is known as the tropo-
sphere, with the region overlying that where the temperature increases with height known as
the stratosphere. Near-surface tropospheres and overlying stratospheres are ubiquitous in our
Solar System, as shown in Figure 15.2. We’'ll next dive into the thermodynamic properties
that control these vertical temperature profiles.

15.2 Atmospheric thermodynamics
15.2.1 First law of thermodynamics

The first law of thermodynamics is a statement of energy conservation — namely, that
the rate of change in the internal energy of a system is the sum of the working and heating
rates JU

o Q+W, (15.6)

where U is the internal energy, @ is the heating rate (which represents interactions with
environments at different temperature through conduction and radiation), and W is the
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Figure 15.2: Atmospheric temperature-pressure profiles of planets in our Solar System
with significant atmospheres (not including Venus), along with Titan. Figure adapted from
Seager (2010).

working rate (which represents a mechanical exchange of energy with the environment). For
an atmosphere, the working rate is dominated by the expansion work done on the system

av
W =—p— 15.7
where V' is the volume of the system. Thus, for an atmosphere we can write the first law of

thermodynamics as
dUu av
— =Q —p—. 15.8
7 =Q-r (15.8)

For studies of atmospheres, an alternate version of the first law of thermodynamics is often
used with enthalpy H = U + pV instead of internal energy,

dH dp

— = V—. 15.9
a9tV (15.9)
15.3 Specific heats
The chain rule can be used to re-state the change in internal energy as
au - oudr oudv
e 15.10
it~ oTdt v dt (15.10)

We can define the heat capacity at constant volume C,, to be

ou
C, = <ﬁ) (15.11)
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which is a specific heat (c,) when defined per mass or per mole. Note that for an ideal gas
changes in internal energy due to changes in volume can be neglected, so we can write the
change in internal energy as

aUu dT
— = Cy—. 15.12
dt dt ( )
We can equivalently perform the chain rule on the change in enthalpy with time to express
dH o0HdT 0H dp
o 15.1
i T dr | opdi (15.13)

We can similarly define the heat capacity at constant pressure C, to be

C, = <g—g)p. (15.14)

For an ideal gas, the enthalpy changes due to pressure changes are negligible, so we can write
the change of enthalpy as

dH dT
— =C,—. 15.15
dt Pt ( )
For an ideal gas, the heat capacity and specific heat are related as
C,=0C,+ NR,,
P (15.16)
Cp = Cy + Ry,

where N is the number of moles in the system. The heat capacity C, per molecule is kg /2
per degree of freedom, and note that the universal gas constant is related to the Boltzmann
constant as R, = Nakp with Ny = 6.022 x 10%> mol™' Avogadoro’s number. Thus, the
specific heat capacity ¢, can also be expressed as R, /(2) per degree of freedom. For diatomic
molecules, there are 3 translational and 2 rotational degrees of freedom, leading to ¢, = 5/2R,,
and ¢, = 7/2R,,. Two common combinations of specific heats are

C
v = C—p

o (15.17)
K= —,

Cp

where for Earth air v ~ 1.4 and k ~ 0.286. The specific heat capacities and specific heat
ratios of relevant atmospheric gases are shown in Figure 15.3.

15.3.1 Convective instability

For adiabatic processes in an ideal gas, () = 0 in the first law of thermodynamics. If we
can further consider the specific heat capacity and gas constant to be constant, this leads
to an expression for the change in temperature with height of an adiabatic atmosphere (as
derived by Prof. Lothringer):

T
a _ 9. (15.18)
dz Cp

Thus, the lapse rate of an adiabatic parcel depends on both the gravity of the planet and
the composition of the gas through c,.
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H>O CHy CO» Ny ) Hoy He NH3

Crit. point T 647.1 190.44 304.2 126.2 154.54 33.2 5.1 405.5
Crit. point p 221.eb  45.96e5 T73.825e5  34.0e5  50.43e5 12.98e5  2.28eb 112.8
Triple point T 273.15 90.67 216.54 63.14 54.3 13.95 2.17 195.4
Triple point p 611. A17eb 5.185e5  .1253e5  .0015e5  .072e¢b  .0507ebH  .061ed
L vap(b.p.) 22.55eb 5.1eb 1.98eH 2.13e5  4.54eb 203e5  13.71eb
L vap(t.p.) 24.93e5  5.36eb 3.97eb 2.18e5  2.42eH 7?7 77 16.58eH
L fusion 3.34eb  .5868eH 1.96eH .2573eH  .139eH .b82eb 77 3.314eb
L sublimation  28.4e5  5.95eH 5.93eb 2.437eb  2.56eb 77 77 19.89¢e5
p lig(b.p.) 958.4 450.2 1032. 808.6 1141. 70.97 124.96 682.
p liq(t.p.) 999.87 7?7 1110. 77 1307. 7?7 77 734.2
p solid 917. 509.3 1562. 1026. 1351. 88. 200. 822.6
¢, (0C/1bar) 1847. 2195. 820. 1037. 916. 14230. 5196. 2060.
Y(ep/ew) 1.331 1.305 1.294 1.403 1.393 1.384 1.664 1.309

Table 2.1: Thermodynamic properties of selected gases. Latent heats of vaporization are given
at both the boiling point (the point where saturation vapor pressure reaches 1bar) and the triple
point. Liquid densities are given at the boiling point and the triple point. For C'Oy the ’boiling
point’ is undefined, so the liquid density is given at 253K /20bar instead. Note that the maximum
density of liquid water is 1000.00kg/m? and occurs at —4C'. Densities of solids are given at or near
the triple point. All units are mks, so pressures are quoted as Pa with the appropriate exponent.
Thus, lbar is written as 1leb in the table.

Figure 15.3: Relevant thermodynamic data for common atmospheric gases. Table adapted
from Pierrehumbert (2010).

Atmospheres with temperature profiles that decrease more sharply with height than
the adiabatic profile are unstable to convection. This is because if we perturb a parcel
at the same density as the surroundings, the parcel’s density will change according to the
adiabatic relation while keeping a pressure close to that of the surroundings. If the density
is less than the environmental density for upward displacements (or greater for downward
displacements), then the parcel will accelerate away from its initial position — this will initiate
convection. Figure 15.4 shows a schematic of convectively unstable and stable temperature
profiles compared to the adiabatic lapse rate. If the parcel is hotter than the surrounding
air than it will be less dense (and if it is cooler, then it will be more dense). The atmosphere
will then be unstable to convection if temperature decreases with height faster than the
adiabatic lapse rate —g/c, and stable if temperature decreases with height more slowly than
the adiabatic lapse rate. Thus, we can express the convective stability of the atmosphere as

dT

— < _9 unstable,

dz Cp

dT

@ __9 marginally stable, (15.19)
dz Cp

dT

—_— > _9 stable.

dz Cp

Atmospheres that are forced to be unstable will adjust via convection to have lapse rates
that are approximately stable, with dT'/dz ~ —g/c,. In general, planetary atmospheres are
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Figure 15.4: Schematic showing the convective lapse rate along with convectively unstable
and stable temperature profiles. Figure courtesy Adam Showman.

stable to convection except at deep levels, either near the surface for rocky planets or within

the deep envelope and interior in gas giant planets.
Note that potential temperature is a very useful quantity to determine stability of a
planetary atmosphere. The potential temperature is defined such that

dlnf = dInT — Edlnp, (15.20)

Cp

and is equivalent to entropy in an atmospheric context. Integrating for constant R/c, = k,

we find .
o=T (@) . (15.21)
p

We can further relate the potential temperature variation with height df/dz to the lapse rate
dT'/dz as

1d0 14T wdp
O0dz Tdz pdz
1d_9 1dT &

ba: T " (15.22)

1do 1 (dl g
0dz T \dz ¢,)’



where we have used hydrostatic equilibrium in step 2 and the ideal gas law in step 3. Note
that this implies that if df/dz = 0, the lapse rate d1'/dz = —g/c, (i.e., a dry adiabat). Thus,
we can write an equivalent expression to Equation (15.19) using potential temperature:

d_9 < 0 unstable,
dz

Z—e = 0 marginally stable, (15.23)
z

d_9 > () stable.
dz

15.3.2 Condensation, clouds and the moist adiabat

Clouds can form in planetary atmospheres where species are thermodynamically favored
to undergo a phase transition from vapor to solid phases. Condensation and deposition are
the process of conversion of species from gaseous to liquid, or gaseous to solid, respectively —
generally speaking, cloud formation (both condensation and deposition) are often referred to
simply as “condensation” into liquid or solid phases. Cloud condensation is thermodynam-
ically allowed when the partial pressure of a species exceeds its saturation vapor pressure.
The saturation vapor pressure is set by the Clausius-Clapeyron relationship, which for an
ideal gas can be expressed as

dpsat . l L

dr T pgl ~ Peond

vap

(15.24)

If peond » Pvap (s is the case for most relevant atmospheric condensibles), then (using the
ideal gas law) Clausius-Clapeyron simplifies to

dpsa psa L
th = R}Q, (15.25)

where pg,t is the saturation vapor pressure and L is the latent heat of condensation or fusion
of the species of interest. This can be directly integrated to obtain the saturation vapor

pressure curve
P, = Po€XpP (1:) 26)
sat 0 R TO T 9 .

implying that the saturation vapor pressure scales exponentially with —1/7". As a result,
the saturation vapor pressure of species decreases with decreasing temperature, as shown in
Figure 15.5.

We can equivalently state that cloud condensation is thermodynamically allowed at a
given pressure when T < T.,.q, which then occurs when temperature profiles cross the
condensation curves in Figure 15.5. This is why clouds generally form at high altitudes in
planetary atmospheres — because the temperature decreases with height in the troposphere,
clouds form at altitudes where the temperature is cool enough to allow for condensation.
The exception is when the local saturation vapor pressure is enhanced (e.g., due to mixing),
increasing the partial pressure of a species to allow for condensation.

Note that for an atmosphere composed of a single (condensible) component, the Clausius-
Clapeyron relationship can be expressed as a lapse rate

dnT  RT
dnp L’

(15.27)
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Figure 15.5: Temperature profiles of Solar System giant planets and exoplanets (black
lines) compared with condensation curves of various species (dashed lines) and equilibrium
chemistry equivalency curves (dotted lines). Figure adapted from Gao et al. (2021).

which is the single component moist adiabat. Given that the dry adiabatic gradient is
dInT'/dlnp = R/c,, the moist adiabatic gradient is smaller than the dry adiabatic gradient if
L > ¢, T — which is almost always satisfied for most condensible species of interest, including
water, carbon dioxide, methane, and nitrogen. The more general form of the moist adiabat
for a dilute condensible species can be expressed as

L
dnT R, + %

dlnp ¢, + RLH—QT%’

(15.28)

where & = pgai/pa is the mixing ratio of the condensible gas, i.e., the ratio of the saturation
vapor pressure to the partial pressure of the dry gas component p,.

15.4 Radiative relaxation

In atmospheres that are convectively stable, radiative heat transport controls the tem-
perature profile. We’ll study the temperature profiles of radiative atmospheres in more detail
in upcoming lectures, especially when we cover observational characterization via emission
spectroscopy. First, let’s simply calculate how close to a state of radiative equilibrium an
atmosphere will be in by estimating its radiative timescale, i.e., the time over which the
atmosphere will adjust back to a state of radiative equilibrium.

First, if the atmosphere’s cooling is dominated by radiation, the rate of change of enthalpy
must be equal to the outgoing longwave radiation of the planet

dH

— = AoT? 15.29
where A is surface area. We can re-write this in terms of specific enthalpy h as
dh
— = AoT*? 15.30
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and given hydrostatic balance m/A = ¥ = p/g and assuming an ideal gas where h = ¢, T
(along with ignoring the dependence of ¢, on temperature) we can write

pdTl "
—— =o0T". 15.31

Now, we can determine how long it takes the atmosphere to adjust back to radiative equi-
librium from a small temperature perturbation 67". We can write the temperature as

T = Ty + 6T, (15.32)

where Tj is the radiative equilibrium temperature. Inserting this into our expression, we can
write

pdTly | pd(dT)
r g dt T g dt
Given that the perturbation is small, we can first-order Taylor expand the right hand side
to write

= o(Ty + 0T)*. (15.33)

pdly | pd(dT)
Cp——— + cp————
Pg dt Pg dt
Given that the radiative equilibrium state is not changing and that we only consider terms
related to the perturbation, we can simplify this to

= oTy + 4Ty oT. (15.34)

d(oT
CPEQ — 4T36T. (15.35)
g dt

Then, we can scale this equation using d(0T)/dt ~ 0T /Traq to write an expression for the
radiative timescale

g~ D2

rad q 40'T3.

The radiative timescale is thus shorter for hotter, thinner atmospheres that have a higher

gravity, and vice versa. We’ll next apply this to consider how close to radiative equilibrium

different planetary atmospheres should be.

(15.36)

15.4.1 Radiative timescale activity

Let’s calculate the radiative timescale for different planetary atmospheres to get a sense
for how close each atmosphere is to a state of radiative equilibrium. Split into 6 groups, and
depending on your group you’ll calculate the radiative timescale of different atmospheres.
We'll then compare our results.

1. (Groups 1-2) Calculate the radiative timescale at the surface of Earth, assuming that
Earth has a temperature equal to its zero-albedo full-redistribution equilibrium tem-
perature and an atmosphere comprised entirely of Ns.

2. (Groups 3-4) Calculate the radiative timescale at the 1 bar (i.e., 10° Pa) level in
Jupiter’s atmosphere, assuming that Jupiter has a temperature equal to its zero-albedo

full-redistribution equilibrium temperature and an atmosphere comprised entirely of
Hs,.
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3. (Groups 5-6) Calculate the radiative timescale at the 1 bar level of a 51 Peg b-like hot
Jupiter that orbits a Sun-like star with a separation of 0.05 au. Assume that the 1
bar temperature is equal to the zero-albedo full-redistribution equilibrium temperature
and that the planet has an atmosphere comprised entirely of H.

15.5 Atmospheric composition
15.5.1 Compositional diversity

There are two primary ways of measuring the composition of exoplanets. The first is
derived from astrophysical measurements of the “metallicity” of stars, and measures the
heavy element abundance relative to hydrogen (M/H), in turn relative to our own Sun.
Metallicity is best used for gaseous planets that inherited significant amount of their mass
from the protoplanetary disk, which is in turn expected to have compositional similarities
to the host star. Figure 15.6 shows the metallicty of Solar System ice and gas giants,
exoplanets, and brown dwarfs as a function of planet mass. There is an intriguing trend of
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Figure 15.6: Metallicity of Solar System (colors), exoplanets (red), and brown dwarf (ma-
roon) atmospheres as a function of mass. A metallicity of 1 corresponds to the metallicity of
our Sun. The Solar System objects show decreasing metallicity with increasing mass, which
serves as a first-order expectation for exoplanets that is yet to be discerned. Figure adapted
from Zhang (2020).

decreasing metallicity with increasing planet mass for the Solar System gas and ice giants,
with Uranus and Neptune having metallicities nearly 100x Solar, Saturn having a metallicity
approximately 10x Solar, and Jupiter having a metallicity around 3x Solar. Meanwhile,
brown dwarfs (which are expected to form similar to stars) all have low metallicity, implying
that their atmospheres do not have an ice or refractory component significantly enhanced
from stars. At this moment, exoplanets are effectively a scatter plot in mass-metallicity space
— current and future work with JWST and ground-based telescopes to measure the metallicity
of exoplanet atmospheres may better discern whether the mass-metallicity “trend” from our
Solar System extends outward to exoplanets.
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The second way to measure bulk composition is to consider the individual bulk elemental
composition. This is normally done by measuring elemental ratios, with the most common
being the C/O ratio, given that it is expected to be linked to the relative gaseous vs. re-
fractory composition of the protoplanetary disk (Oberg et al., 2011, see Figure 15.7). Figure
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Figure 15.7: C/O ratio of gas (solid) grains (dashed) relative to the Solar C/O ratio
(dotted) in a simple model for a protoplanetary disk. The C/O ratio of gas is enriched due
to condensation of HyO and CO, at the water and carbon dioxide ice lines, which in turn

depletes the C/O ratio of grains that form rocky cores. Figure adapted from Oberg et al.
(2011).

15.8 shows a ternary diagram of atmospheric composition as a function of the relative abun-
dance of hydrogen, oxygen, and carbon. The end-members of atmospheric composition are
standard gas giant atmospheres (Hs), oxygen-dominated atmospheres, and graphite/carbon
monoxide-dominated atmospheres. Generally, planets are expected to have intermediate
C/O ratios, with the specific combination of C/O ratio and metallicity determining whether
the object is CO or CO5 dominated.

For rocky planets, the atmospheric abundances are set by the competition of atmospheric
loss and outgassing from the interior (e.g., via volcanism). Most Earth-like rocky planets are
expected to have lost a primary envelope of H accreted from the protoplanetary disk, and
thus their atmospheres are “secondary,” and obtained via outgassing from the solid interior.
Thus, the bulk composition of rocky planets is expected to roughly relate to their atmo-
spheric composition, with fractionation from outgassing leading to an atmosphere comprised
of volatile species.

15.5.2 Equilibrium chemistry

If an atmosphere is in thermochemical equilibrium, the temperature, pressure, and metal-
licity (i.e., bulk composition) alone set the abundance distribution of each individual chemi-
cal species within the atmosphere. Following Visscher & Moses (2011), we consider a simple

99



& He

H.O misc. | GHy
(HCN?)

02 o pure carbon
(Si0?) 8(( I&%z (SiC? graphite & CO?)
24

O C

Figure 15.8: A ternary diagram of atmospheric compositions in H-C-O space. Gas giants
lie on the top, low C/O planets on the bottom left, and high C/O planets on the bottom
right. Figure adapted from Zhang (2020).

balanced gas-phase reaction
aA + bB = ¢C + dD, (15.37)

where the lowercase letter represents the number of molecules of the uppercase letter. The
equilibrium constant of this reaction can be expressed as

_[CFDY
Rea = TP

where brackets represent the number density of each species. This equilibrium constant can
alternately be written in terms of partial pressures p,

(15.38)

C
K, — PP, (15.39)
PaADPp

The equilibrium constant is then related to the standard-state Gibbs free energy change
A,G° = AyG°(products) — A;G°(reactants) and temperature as

A, G°
RT |

K, = exp (— (15.40)

Thus, to determine the relative abundances of species for a net chemical reaction at a given
temperature and pressure, one only needs to obtain the change in Gibbs free energy between
products and reactants. The standard-state Gibbs free energy change for formation can be
calculated from the standard state enthalpy AyH° and entropy A;S° as

A;G° = ApH® — TAS°, (15.41)
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where the standard state enthalpy of formation and entropy are compiled in standard chem-
istry reference databases, e.g., https://webbook.nist.gov/chemistry/.

Figure 15.5 shows the equilibrium chemistry equivalency curves of methane-carbon
monoxide and ammonia-nitrogen, which indivdiually summarize the thermochemical car-
bon and nitrogen cycles. The net thermochemical carbon cycle can be written as

where CHy4 has a higher abundance at cooler temperatures and higher pressures and CO has
a higher abundance at higher temperatures and lower pressures. The net thermochemical
nitrogen cycle is

Ny + 3Hy = 2NH3, (15.43)

with NH3 having a higher abundance at low temperatures and high pressures and Ny having
a higher abundance at high temperatures and low pressures.

15.5.3 Disequilibrium chemistry and mixing

Chemical species can be mixed by fluid motions, causing the abundance of a given species
to be different than the expected from considerations of thermochemical equilibrium. Such
“disequilibrium” states occur when the typical mixing timescale 7, is shorter than the
chemical timescale Tehem

Tmix € Tehem dise‘q‘uil?brium, (15.44)
Tmix > Tehem €quilibrium.

Though large-scale vertical motions are not diffusive (rather, they are the combination of
many small-scale advective motions), in order to concoct a one-dimensional picture of mixing
we can define a vertical diffusion coefficient, often termed K,,. K,, is analogous to the
effective viscosity from our discussion of protoplanetary disks, but here limited to vertical
transport alone (hence the subscript — it’s really one component of a larger diffusion tensor).
We can relate the vertical mixing timescale to K,, as

H2
Tmix ~ ’
Kzz

(15.45)

where H = RT/qg is the (isothermal) pressure scale height. The eddy diffusivity is expected
to increase with decreasing pressure in planetary atmospheres due to the combination of
increased radiative forcing and higher wave amplitude at lower pressures (see Figure 15.9).
For radiatively dominated isothermal atmospheres, K,, oc p~'/2. This implies that mixing
timescales will decrease with decreasing pressure in most atmospheres. Meanwhile, the chem-
ical timescales in planetary atmospheres are expected to increase with decreasing pressure (at
least in the troposphere), as chemical reaction rates drop with decreasing temperature. As a
result, there is expected to be “quench point” in planetary atmospheres where 7,ix = Tehem,
and at lower pressures (higher altitudes) than the quench point 7Tyix < Techem. Thus, the
quench point is the location in the atmosphere where above the atmosphere is in a state
of chemical disequilibrium, and below it is in a state of chemical equilibrium. This quench
point is species-dependent, as it depends itself on the chemical timescale, which depends
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Figure 15.9: Eddy diffusion coefficient K,, for various Solar System objects as well as
exoplanets. Figure adapted from Zhang (2020).

on the chemical reaction of interest. Figure 15.10 shows example abundance profiles from
a disequilibrium chemistry calculation for the hot Jupiter HD 189733b with the VULCAN
code, displaying how species quench at different locations at depth (compare the solid lines
to the dotted lines). Note that the process driving chemical disequilibrium will change at
pressures lower than the quench point for irradiated atmospheres, as photochemistry be-
comes the dominant disequilibrium process rather than mixing at low pressures where UV
radiation is absorbed (e.g., in Earth’s stratosphere).

15.6 Atmospheric loss
15.6.1 Energetic considerations

Atmospheres can be lost to space through two main types of mechanisms: thermal and
non-thermal processes. Thermal atmospheric escape corresponds to cases where the upper
atmospheric temperature is high enough that the thermal velocity of the gas approximately
exceeds the escape velocity of the planet (see this problem set for a more accurate estimate),
implying that the gas is not gravitationally bound to the planet. The potential for thermal
escape can be described by the Jeans parameter

5= Egray _ GMypm,
Etherm kBTRp ,

(15.46)

which is the ratio of gravitational to thermal energy in the upper atmosphere of a planet.
Non-thermal escape occurs through processes that are not related to the temperature of the
gas, usually related instead to electrical interactions such as stellar wind interactions with
ions. Generally, non-thermal escape is not expected to cause total atmospheric loss (unless
the host star is very highly active), while thermal escape is able to completely remove
atmospheric envelopes especially for close-in, hot, low-mass planets.
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Figure 15.10: Predicted chemical profiles from full chemistry models (solid lines), models
without photochemistry (dashed lines), and models assuming equilibrium chemistry (dotted
lines) for HD 189733b. Figure adapted from Tsai et al. (2021).

Within thermal escape, there are two further categories: supply-limited and energy-
limited escape. Supply-limited escape is escape that is limited by the supply of a low mean
molecular weight species, for example hydrogen, and is what regulated the escape of Earth’s
primary hydrogen atmosphere. In supply-limited escape, molecules such as water are broken
down into atoms by chemical reactions (e.g., photodissociation driven by the host star’s UV
radiation), and the lighter atoms segregate to lower pressures due to their larger scale height
in the upper atmosphere, causing loss to space. What sets the eventual rate of escape is
then the transport of these light atoms to high altitudes from where they can then be lost
to space. Energy-limited escape is conversely when the energy available regulates the escape
rate. The energy-limited mass loss rate can be roughly estimated as

LXUVR]?;

M ~ n—4GMpa2’ (15.47)
where Lxyy is high-energy portion of the stellar luminosity (with XUV the dominant region
of the spectrum for high-energy photons) and 7 is the efficiency of mass loss through a
hydrodynamic wind, which must be calculated from numerical simulations and is n ~ 0.1 —
0.2. Energy-limited mass loss is larger for planets around more active stars (higher Lxyv)
with closer in orbits (lower a), and lower masses and larger radii (and thus slower escape

velocities).
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15.6.2 The cosmic shoreline

A foundational observation was made by Zahnle & Catling (2017) (along with the au-
thors’ preceding work) that there appears to be a “cosmic shoreline” in irradiation-escape
velocity space, where planets with high instellation and low escape velocities do not have
significant atmospheres while planets with high escape velocities and low instellation hold
onto thick atmospheres. An updated version of their empirical observation is shown in Fig-
ure 15.11, where the cyan line represents the I oc v? curve that marks the shoreline. Though
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Figure 15.11: The “cosmic shoreline,” i.e. the empirically determined level of instellation
that planets below a given escape velocity cannot hold onto thick atmospheres. Shown is
a scatterplot of the level of instellation and escape velocity of various planets and moons
in our Solar System and beyond, compared with the empirical cosmic shoreline (cyan) and
hydrodynamic thermal (energy-limited) escape curves for various species (methane, nitrogen,
water — black, gold, blue colored lines). Figure adapted from Zhang (2020), in turn modified
from Zahnle & Catling (2017).

this shoreline nicely describes the observed prevalence of atmospheres, it does not correspond
one-to-one with existing theoretical predictions. Energy-limited mass-loss would imply that
the shoreline would scale as I o vg\/ﬁ, too shallow to explain the empirical relationship. Ad-
ditionally, supply-limited loss cannot alone explain the trend. As a result, Zahnle & Catling
(2017) proposed that impact erosion (the loss of atmospheres through energy released via
impacts from comets and asteroids) could potentially shape the cosmic shoreline. Observa-
tions of the presence/absence of atmospheres on exoplanets (through the transmission and
emission spectroscopy methods that we’ll discuss in two weeks) are likely required to provide
a firm empirical basis on which to test our fundamental understanding of atmospheric loss.
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16 Exoplanet interiors: giant planets
Our agenda for Day 17 is the following:

1. Phase diagram of hydrogen, structure of our gas and ice giants (15 minutes)
2. Hydrostatic equilibrium (for the third time!), central pressure activity (40 minutes)

3. Equations of planetary structure, energy transport and Schwarzschild criterion (20
minutes)

Today’s reading is the Fortney Giant Planet Interior Structure and Thermal Evolution review
paper. This will provide a comprehensive overview of the current study of the interiors of
both Jupiter and Saturn as well as gas giant exoplanets.

16.1 Phases of H/He in giant planets

Hydrogen lies in two main phases in the interiors of gas giant planets: molecular hydro-
gen (Hsy) in the outer envelope and atmosphere, and metallic hydrogen (H™*) in the interior.
Metallic hydrogen forms due to pressure ionization of molecular hydrogen, which turns hy-
drogen into a dense lattice of protons, with a distance between protons in the lattice that
is the same as the distance between protons in a hydrogen molecule. The electrons in this
lattice are delocalized, thus causing metallic hydrogen to have high thermal and electrical
conductivities. As shown in Figure 16.1, metallic hydrogen is expected to form at high den-
sities of ~ 1 g cm ™3, corresponding to pressures between approximately 0.1 — 3 Mbar. As

Figure 16.1: Phase diagram of
hydrogen, showing the molecu-
lar, atomic, metallic, and plasma
regimes. Over-plotted in gray
are temperature-density profiles of
Jupiter and stars with M =
0.3,1,15 Mg,
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a result, both Jupiter and Saturn are expected to have outer layers of molecular Hy, with a
transition in the deep interior to metallic hydrogen. Note that even hotter gas giant planets
(e.g., some hot Jupiters) can have a transition from molecular hydrogen to hydrogen plasma
in the interior due to temperature-driven (rather than pressure-driven) ionization, which is
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governed by the Saha equation and is what sets the ionization state of stars. In both cases,
the ionization (pressure or temperature driven) in the interiors of gas giant planets is high
enough that the ratio of the electrostatic potential energy to the thermal energy

2
Ecoul o €

I' = = ~1
Ew dkgT ’

(16.1)

where for an ideal gas I' ~ 0. This implies that the equation of state of the interiors of gas
giant planets is very far from an ideal gas, and pressure is no longer a linear function of
density and temperature.

Helium is more difficult to ionize than hydrogen because it has two electrons rather than
one. As a result, He is neutral until pressures of = 50 Mbar, causing it to never transition
to a metallic or plasma form in typical giant planet interiors. Though helium does not
transition, when hydrogen undergoes its molecular to metallic transition the hydrogen and
helium fluid together undergoes a phase change from being well-mixed and homogeneous
at low pressures (where hydrogen is molecular) to being demixed at high pressures (where
hydrogen is metallic). Figure 16.2 shows this demixing boundary both in temperature-
pressure space as well as physically within Jupiter’s interior. The demixing of hydrogen and
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Figure 16.2: Experimental data for the phase diagram of the H-He mixture (a), comparison
of experimental data (red) with both previous calculations (green, blue lines) and the Jupiter
interior temperature profile (black) (b), and inferred regime of H-He demixing in Jupiter’s
structure (c). Figure adapted from Brygoo et al. (2021).

helium at ~ 1 Mbar in Jupiter’s interior causes helium to phase separate from hydrogen and
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“rain” out, falling deeper within the planet. This then causes a compositional gradient in
the interior of Jupiter (and Saturn) which has been demonstrated to impact their evolution.

16.2 Interior structures of Solar System giant planets

The fundamental interior structures of Jupiter and Saturn are broadly similar, as shown
in Figure 16.3. Both planets have exterior envelopes of molecular hydrogen that transition to

Jupiter
~ 165K
1 bar molecular H,
Saturn

~ 6,500 K ~135K

1-2 Mbar molecular H, 1 bar
~ 6,500 K
1-2 Mbar

layered structure +
~ 25,000 K o ompact core (e, ~ 10,000 K
40 Mbar inhomogeneous structure 10 Mbar

fuzzy core (right)

Figure 16.3: Pie slice view of Jupiter and Saturn, showing layers of molecular Hy, helium
demixing, metallic hydrogen, and possible structures of the deep interior. Figure courtesy
Jonathan Fortney.

metallic hydrogen at pressures of ~ 1 Mbar, with H-He demixing at this region that causes
a compositional gradient. From matching internal structure models to precision gravity
measurements of the Juno (for Jupiter) and Cassini grand finale (for Saturn) missions, both
planets are inferred to have extended heavy element “cores,” which are an extended mix of
metal, rock, and H/He. This differs somewhat to the typical expectation from core accretion,
where a planet forms a (solid, singular) core and then accretes gas onto of the core from
the protoplanetary disk. Three possibilities for this diluted core are: 1) that it occurred
as a product of planetesimal accretion during formation, as planetesimals burned up in the
envelope before reaching the core; 2) that the core was “dredged” up by convective motions
into the envelope; 3) that Jupiter underwent a giant impact early in its evolution that
destroyed the core and mixed it upward into the envelope. The fact that both Jupiter and
Saturn show evidence for diffuse cores implies that the mechanism may be ubiquitous and
thus linked to formation.

Compared to Jupiter and Saturn, relatively little is known about the interiors of Uranus
and Neptune. This is because both planets have only been studied by a single flyby mission,
Voyager 2, while both Jupiter and Saturn have been characterized in detail by orbiters.
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Figure 16.4 shows schematics of the possible interior structures of Uranus and Neptune,
where our lack of detailed information prevents a detailed picture of the differences in internal
structure between the two planets. In general, models predict that the outer layers of both

convecting
H/He+ices

convecting ices

/

stably stratified
/ ices + rocks \
rocks
Uranus Neptune

Figure 16.4: Pie slice views of the possible interior structures of Uranus and Neptune, from
Fortney et al. (2010). These planets have an envelope dominated by H/He overlying an icy
layer of volatiles, which then overlies a deep interior of ice, rock, and metals.

Uranus and Neptune is dominantly (molecular) hydrogen and helium. This H/He envelope
then overlies a fluid layer of astrophysical ices (e.g., water, methane), which then overlies
an interior of ices and heavy elements. However, it is not known what the mass fraction of
various ices and rock/metal is in the interiors of Uranus and Neptune. Additionally, though
these planets are often termed “ice giants” due to their composition, the physical state of
these high pressure ices are a hot, dense, partially ionized (and conductive) fluid. At the
interior conditions of Uranus and Neptune, water and hydrogen are miscible, and thus can be
treated as one fluid (Soubiran & Militzer, 2015). Similarly, at high pressure in the interiors
of Uranus and Neptune rock and ices may be similarly miscible, leading to a diffuse heavy
element interior similar to Jupiter and Saturn. Detailed gravity observations of Uranus and
Neptune with orbiters are required to better constrain their interior structure.

16.3 Hydrostatic equilibrium

Recall that hydrostatic equilibrium can be expressed as

dp Gm
L e pg =7 (16.2)

dr
where r is radius from the center of the planet, and m is the mass coordinate (i.e., the
enclosed mass). Note that the mass of any given shell of the planet can be related to the
density and radius as dm = 4wr®pdr. Substituting in for dr, we can express hydrostatic

equilibrium in terms of dp/dm as

dp Gm
% == *m. <16-3)
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As a result, the pressure must increase as the mass coordinate decreases, going toward the
center of the planet. We can now use this to determine the pressure at the center of any
given planet, as we’ll do in our activity.

16.3.1 Central pressure activity

Use the previously derived expression of hydrostatic equilibrium in mass coordinates to
solve the following problems in groups of 2-3.

1. Derive an approximate expression for the pressure at the center of a planet as a function
of its mass and radius. To do so, integrate Equation (16.3) from the center to the surface
of the planet, assuming constant density and that the surface of the planet is at zero
pressure.

2. Use your expression to estimate the pressure at the center of Jupiter, in Mbar (where
1 bar = 10° Pa). Compare this to the value shown in Figure 16.3. Describe why your
estimate might be different than the exact value that includes density variations with
mass coordinate.

3. Given that hydrogen metallizies at pressures = 1 Mbar, determine whether hydrogen
changes phase within Neptune’s interior. Note that Neptune has a magnetic field
driven by an internal dynamo — ionization of what species could lead to a dynamo that
generates Neptune’s magnetic field?

16.4 Equations of planetary structure

Five equations fully represent the internal structure of a planet — these are the equations
of planetary structure, which are equivalent to the equations of stellar structure but without
including nuclear burning. The first two of these have previously been introduced this
chapter, and are the equations of mass conservation

d

d—T — 4rr2p, (16.4)
and hydrostatic equilibrium

dp Gm

— = — . 16.5

dm 4rrd (16.5)

The third equation of planetary structure is a statement of energy conservation,

dL ds

— = €gray = — 1 —, 16.6
dm . dt ( )
where L is the outgoing luminosity at mass coordinate m and S is the entropy, the loss
of which drives gravitational cooling €4,y and contraction. The fourth equation describes

energy transport

ar GmT

— =—-——>"V, 16.7

dm 4d7tr3p ( )
where V = dInT /dlnp is the logarithmic temperature gradient (equivalent to lapse rate from
our discussion of atmospheres). We’ll discuss what sets V in the following section.
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The final equation of planetary structure is the equation of state, which relates pressure,
density, and temperature and depends on the composition of the planet. The equation of
state for gas giant planets is non-trivial, because due to the high densities in the interior of
the planet quantum mechanics must be taken into account due to the uncertainty principle
and Pauli exclusion principle. The pressure in the interior of a giant planet is the sum of
the degeneracy pressure and thermal pressure, i.e., p = Pgeg + Psn- In general, the ratio of
thermal pressure to total pressure (at high pressures relevant to the deep interiors of gas
giants) is pa/p ~ 1 x 107°T. Thus, at typical gas giant central temperatures of 10* K, the
contribution of thermal pressure to the total pressure is only ~ 10% — meaning that these
objects are highly degenerate! In practice, equations of state for giant planet interiors are
tabulated based on numerical quantum mechanics simulations that are benchmarked with
high-pressure experiments using either diamond anvil cells or laser compression to reach ~
Mbar pressures.

16.4.1 Heat transport in planetary interiors

The equation for energy transport in planetary interiors can alternately be written as a
change in temperature with radius

dlI' dpT

dr drP
There are two primary ways heat can be transported through planetary interiors: radiation
and convection. Radiative energy transport is determined by the rate of diffusion of photons

in a random-walk process. The mean free path of photons depends on the number density
n and cross section o, or equivalently mass density p and opacity k, as

(16.8)

A= —=—. (16.9)
no  pK
The radiative lapse rate in a planetary interior can be related to the opacity, luminosity,
pressure, mass coordinate, and temperature as

3 kLp
64rocG mT4

Conversely, the adiabatic lapse rate V,q is set by the thermodynamic properties of the planet,
and in the envelope (as for an atmosphere) it is Vo4 = R/c,.

Whether heat transport and the resulting lapse rate is set by convection or radiation can
be determined by the Schwarzschild criterion, which sets the temperature gradient to the
smaller of the adiabatic gradient V,q or the radiative gradient V,,q. We can express this as

Vied = (16.10)

Vad < Viaq convection,
L. (16.11)
Vad > V9aq radiation.

Because the radiative gradient increases with pressure and opacity, generally planets transi-
tion from having radiative exteriors to having convective interiors. In some cases, radiative
“windows” (Guillot et al., 1995) appear at shallow regions of the otherwise convective enve-
lope due to sharp decreases in the opacity due to compositional variations or changes in the
temperature and outgoing luminosity.

110



Equilibrium Temperature (K)

300 500 1000 1500 2500
' T 1.0
2.0 0.8
E 0.6 ~
o 04 S
S 1.51 0.2 %’
° 0.0 &
§ 1.0-'_____'_0-__—-0—- —0.2%
2 0% —0.489,
o 05- —0.63
° é —-0.8
—1.0
0.0+ /4m—mm
1073 1072 107! 10° 10!

Incident Flux (Gerg s~' cm~?)

Figure 16.5: The radii of warm and hot Jupiters as a function of the amount of incident flux
they receive, with points colored by planet mass. Notably, hot Jupiters with 7, = 1000 K
have radii that can be larger than standard evolutionary model predictions (red dashed line).

16.4.2 Radius inflation of hot Jupiters

Many hot Jupiters have radii larger than expected from solving the equations of planetary
structure, even including an additional atmospheric heating term due to the instellation
that the planet receives. Figure 16.5 demonstrates this issue of “radius inflation,” where
hot Jupiters with Ti,, = 1000 K have radii that can be larger than standard solutions of
the equations of planetary structure, while warm Jupiters always have radii at or below the
expected curve. The observed planets with radii smaller than the curve can be explained by
adding additional heavy elements into the interior, which increases the bulk density and thus
reduces the radius for a given mass. However, explaining the radii above the standard model
curve requires some additional physical mechanisms, the causes of which are still active areas
of research (for a recent review, see Fortney et al., 2021).

The radius inflation mechanisms can be broken down into two main categories: mech-
anisms that directly slow the cooling rate of the planet, and mechanisms that offset the
cooling of the planet by adding additional heat into the planetary interior. Because (as
shown in Figure 16.5) the observed radii of hot Jupiters appear to correlate with the level of
incident flux they receive, it is expected that the mechanism(s) that cause the bloated radii
of hot Jupiters are linked to the incident flux, with some fraction of the incident stellar power
v = I'/L, being deposited in the interior of the planet. Possible sources of this deep heat in-
clude tidal dissipation (Bodenheimer et al., 2001), Ohmic dissipation (Batygin & Stevenson,
2010), or atmospheric winds (Guillot & Showman, 2002). To date, there is no “smoking gun”
for which mechanism causes radius inflation. The most powerful statistical result is that the
heating efficiency v peaks at intermediate values of T,, and decreases toward both warm and
ultra-hot Jupiters (Thorngren & Fortney, 2018; Sarkis et al., 2021). This implies that the
mechanism that causes radius inflation is self-limiting at high temperatures, which aligns
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well with mechanisms that are regulated by the feedback of magnetic fields onto motions in
the planetary envelope. This is because hotter planets will have more conductive envelopes,
which then interact more strongly with planetary magnetic fields, leading to Lorentz forces
which generally act against the flow and limit the level of dissipation (Ohmic or mechani-
cal). However, future work studying the timescale of inflation during both the main-sequence
and post-main-sequence is required to conclusively identify the mechanism leading to radius
inflation (or determine if there are multiple mechanisms).

16.4.3 Radius evolution, Kelvin-Helmholtz Timescale

Recently-formed, hot, young planets have their cooling dominated by gravitational energy
loss, with a cooling luminosity of L ~ —dE,/dt. We can scale this expression to derive a
characteristic Kelvin-Helmholtz (thermal) timescale

E, GM?

~ 8 0 16.12
KT RL (16.12)

For a typical Jupiter-mass giant planet, the initial Kelvin-Helmholtz timescale is ~ 10 Myr.
This implies that the present-day “inflated” radii of hot Jupiters is not solely the consequence
of age, as most hot Jupiters are found around main-sequence (Gyr-old) stars. Instead, some
process must halt or slow the cooling of the planet, keeping radii large out to late times.
Figure 16.6 shows radius evolution curves from the planetary structure model predictions of
Komacek & Youdin (2017) for an HD 209458b-like planet with varying depths of deposited
heat. The cases with shallow heating show perpetual cooling over time, demonstrating that
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continued Kelvin-Helmholtz contraction cannot explain the radii of inflated hot Jupiters.
Meanwhile, central heating leads to an equilibrium state where the deposited heating replaces
the cooling of the interior, leading to zero net change in the central temperature (and thus
radius) with time. As a result, the mechanism that causes the radius inflation of hot Jupiters
must be linked toward deep deposition of heat into the planet interior, at least sufficiently
deep to slow cooling over Gyrs of evolution.
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17 Planetary habitability

Our agenda for our special lecture on habitability is the following:

1. Overview of the habitable zone concept (25 minutes)

2. Biosignatures: oxygen, ozone, chemical disequilibrium (15 minutes)

3. Discussion: which technique would you use to search for biosignatures? (15 minutes)
4. Decadal survey, prediction activity (20 minutes)

Today’s reading is a review by Meadows et al., which describes how oxygen can be used as a
biosignature, as well as potential false positives for oxygen biosignatures and thus the need to
characterize planetary environments in order to discern if an observed biosignature is linked
to life. Note that the material in today’s class will not be covered on the last mid-term.

17.1 The habitable zone
17.1.1 Classic 1D framework, carbonate-silicate weathering

The habitable zone is the region around any given star at which water can reside in
liquid form at the surface of a planet that is (roughly) equivalent to Earth in its mass,
radius, atmospheric composition, and atmospheric surface pressure. The habitable zone is
often collapsed to only be a function of the host star type and instellation (i.e., incident stellar
flux) onto the top-of-atmosphere of its companion planet. However, in reality the habitable
zone is multi-dimensional, as it critically depends on the age of the system (because Sun-like
stars brighten and M-dwarf stars dim over time) and thus the evolutionary history of the
planet, along with perturbations of planetary parameters (e.g., mass, radius, atmospheric
composition) slightly away from modern Earth values.

The classic model of the habitable zone was first developed by Kasting et al. (1993). The
critical improvement of the Kasting model over previous approaches is that Kasting took
into account the impact of the carbonate-silicate weathering feedback on climate evolution.
Figure 17.1 shows a schematic of this process, which occurs on all Earth-like planets with ac-
tive (plate) tectonics, surface liquid water (and thus rain and oceans), and silicate rock. The
carbonate-silicate cycle begins with the weathering of exposed calcium/magnesium bearing
silicate rock ((Ca,Mg)SiO3) by rain, which causes a chemical reaction by which COy is re-
moved from the atmosphere, producing calcium bicarbonate ions (see the reaction under
“Land” in Figure 17.1). Then, the calcium and bicarbonate ions are transported (e.g., by
flowing water) to the ocean, and organisms in the ocean use these ions to make calcium
carbonate (CaCOg, see the reaction under “Ocean” in Figure 17.1) a fraction of which is
then deposited on the seafloor after these organisms die, forming carbonate sediments (lime-
stone). This calcium carbonate is then subducted into the interior of Earth, where metamor-
phism due to increasing pressures and temperatures during subduction releases CO, that
can be degassed via volcanism (see the “metamorphosis” reaction in Figure 17.1). The net
carbonate-silicate weathering reaction (Kasting et al., 1993) is

CaSiO3z + COy — CaCO3 + SiOs. (171)
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Figure 17.1: Schematic of the carbonate-silicate weathering cycle. Carbon is ingassed into
the interior via silicate weathering trapping CO, in bicarbonate ions, which are transported
into the ocean and then locked up in carbonate minerals. These carbonate species are
then subducted to the interior. Carbon dioxide is then returned back into the atmosphere
(outgassed) via volcanism.

Importantly, the carbonate-silicate cycle runs faster in hotter climates, as the weathering
process that removes COs vapor from the atmosphere is both a temperature-dependent
reaction and because it generally rains more in hotter climates, with both increasing the
weathering rate. Meanwhile, volcanism is relatively independent of the surface temperature.
As a result, in hotter climates carbon is more efficiently removed from the atmosphere to
the interior, and vice versa (in colder climates weathering is reduced).

As aresult, the carbonate-silicate weathering feedback is a negative (stabilizing) feedback
that helps maintain habitable conditions on Earth-like planets that have active tectonics.
Note that the typical timescale of the carbonate-silicate weathering feedback is = 1—10 Myr,
as it is set by the typical time to remove rock from the seafloor into the interior via sub-
duction. The classical model of the habitable zone includes this negative feedback, which
reduces the amount of CO, in the atmospheres of planets with high instellation and increases
the amount of COs in the atmospheres of planets at low instellation, leading to a greater
range of instellations in which there can be habitable surface conditions.

The solid lines in Figure 17.2 show expectations for the habitable zone from a 1D (clas-
sical) habitable zone model. The “inner edge” of the habitable zone is the highest incident
stellar flux at which the planet can maintain surface liquid water. The inner edge is set
by the instellation limit at which the planet loses its water to space by photolysis, with
the resulting hydrogen escaping to space (often termed the “moist greenhouse limit”). The
“outer edge” of the habitable zone is the lowest instellation at which the planet can main-
tain surface liquid water. This outer edge is set by the formation of carbon dioxide clouds,
which increase the albedo and cool the surface, further promoting CO, condensation. Clas-
sic 1D models nicely reproduce Earth’s habitability, as well as the potential for Mars to be
habitable if it had a thicker Earth-like atmosphere. However, Earth is very close to the
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inner edge of the habitable zone — just a small perturbation in instellation (or a factor of
~ 10 increase in the CO5 partial pressure) could cause Earth to reach a moist greenhouse.
Though there is little concern that anthropogenic climate change will cause Earth to become
uninhabitable over Myr timescales thanks to the silicate-weathering feedback, this is still
a useful reminder of the fragility of the habitability of Earth. One consequence of this is
that due to the brightening Sun, Earth will begin its transition to a moist greenhouse in
~ 1.99 Gyr, transforming Earth into a Dune planet (Wolf & Toon, 2015). Earth will then
continue to warm due to the lack of an active carbonate-silicate weathering feedback, leading
to an eventual runaway greenhouse transition and buildup of CO,, through which Earth’s
climate will become analogous to present-day Venus.

17.1.2 Clouds and 3D effects
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Figure 17.2: The inner and outer edges of the habitable zone from 1D models (solid lines)
and 3D GCMs (dashed lines) as a function of stellar effective temperature and incident stellar
flux. There are two separate GCM predictions, one for slowly rotating planets and one for
rapidly rotating planets. The dayside cloud coverage on slowly rotating planets increases
planetary albedo, moving the inner edge closer in. Figure adapted from Yang et al. (2014).

Figure 17.2 also shows two other predictions for the inner edge of the habitable zone,
both from three-dimensional climate models (GCMs). These GCMs are similar in their
fundamentals to the hot Jupiter GCMs we have discussed previously, but in this case they
are tailored to the study of Earth-like atmospheres, most importantly including condensation
of liquid water and the resulting formation of water clouds. Both of the GCM predictions for
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the inner edge of the habitable zone are closer-in than the classic 1D model predictions. This
is because of the cloud formation in the GCM, as liquid water clouds increase the albedo
of a planet, causing less instellation to reach the surface from the top-of-atmosphere, and
resulting in cooling of the surface relative to a cloud-free state.

There is further a large difference in Figure 17.2 between GCM predictions for slowly
rotating and rapidly rotating planets. On slowly rotating planets (where Ro » 1), cloud
formation and dissipation can occur on much shorter timescales than the rotation period.
As a result, for moist atmospheres near the inner edge of the habitable zone, there is a
persistent deck of clouds on the dayside, greatly increasing the albedo of the planet. In the
limiting case of a tidally locked planet, this dayside cloud deck is confined near the substellar
point, right at the location of maximum top-of-atmosphere downwelling shortwave radiation.
As a result, slowly rotating (i.e., Venus-like) and tidally locked planets have an inner edge
of the habitable zone that is predicted to be significantly closer-in than for rapidly rotating
planets. This may allow for tidally locked rocky planets around M dwarf stars to maintain
habitable surfaces even at close separations, and also may have enabled Venus to have liquid
water until ~ 700 Ma (Way et al., 2016).

17.2 Biosignatures

A biosignature is a sign of life on a planet that is remotely detectable, most commonly
through spectra of the planetary atmosphere. Biosignatures must reliably point toward
inhabited planets, and be detectable through telescopic observations. Life can impact its
environment in myriad ways, but the general effect is for life to push the chemistry of its
environment away from a state of chemical equilibrium. As a result, we can observationally
search for the presence of disequilibrium, either redox disequilibrium due to the prevalence
of oxygen and ozone (for modern Earth-like life), or a more general state of disequilibrium
by comparing the abundances of multiple species.

17.2.1 Oxygen and ozone

Earth’s atmosphere has been oxygenated ever since the Great Oxidation Event (GOE)
that occurred at the boundary between the Archean and Proterozoic eons 2.5 Ga. Figure 17.3
shows a timeline of the oxygen content in Earth’s atmosphere, along with geochemical records
from which this is inferred. The rise in oxygen in Earth’s atmosphere corresponds to the onset
of life that generates oxygen via photosynthesis, like due to early cyanobacteria (algae). The
“smoking gun” of the GOE from the geochemical record is the end of the mass-independent
fractionation of sulfur isotopes. The bottom panel of Figure 17.3 shows this geochemical
record for both sulfur and carbon isotopes. The As3S shows the difference between the sulfur
isotope ratio and that expected from mass-dependent fractionation (the expected way that
isotopes are fractionated). The non-zero A33S in the Archean implies a mass-independent
fractionation process, which is likely due to sulfur photochemistry as stellar ultraviolet rays
could penetrate deep into an anoxic (and thus ozone-free) atmosphere. As oxygen built
up, so did ozone, shutting off sulfur photochemistry and the resulting mass-independent
fractionation of sulfur. Another key piece of evidence of an early anoxic atmosphere are
banded iron formations, which begin to appear at the end of the Archean and form from the
precipitation of oxidized iron.
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Figure 17.3: The oxygenation of Earth’s atmosphere over time, showing the great oxidation
event (GOE) at ~ 2.5 Ga and the transition to complex life ~ 538 Ma (top). The bottom
panel shows the carbon (black) and sulfure (red) isotope fractionation over time, showing
a sharp change in the sulfur fractionation at the onset of the GOE as mass-independent
fractionation of sulfur ceased.

17.2.2 Disequilibrium due to life

The rise of oxygen in Earth’s atmosphere led to methane oxidation through the following
reaction

CH, + 20, — 2H5,0 + COQ, (172)

which significantly changed the atmospheric composition of Earth by oxiding carbon from
CHy4 to CO,. However, even still, Earth’s atmosphere has a non-zero methane abundance
(~ 1.9 ppm) that is produced by life (most famously, by cows). This implies that this
methane oxidation reaction (and other chemical reactions including nitrogen and water) is
not in a state of chemical equilibrium — rather, life has driven Earth’s atmosphere and ocean
into a state of chemical disequilibrium.

The level of chemical disequilibrium in the atmosphere-ocean system of a planet can be
quantified as the “available Gibbs free energy,” which is the difference in Gibbs free energy
from the actual state to that in chemical equilibrium. Recall that the Gibbs free energy is
related to the equilibrium constant of a reaction K as

A,G = —RTIn(K), (17.3)

and from Section 15.5.2 the equilibrium constant is in turn related to the ratio of partial
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pressures of the products to the reactants. Thus, the Gibbs free energy is readily calculated
both for a system in thermochemical equilibrium (just based on the temperature and pressure
conditions) and from the actual state (just by determining the partial pressures of species
for gas, or activity for aqueous species). Figure 17.4 shows a plot of this available Gibbs
free energy over Earth history, determined by Krissansen-Totton et al. (2018). The shaded
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Figure 17.4: The available Gibbs free energy, a metric for disequilibrium, over time for
Earth ocean and atmosphere (blue shaded regions) and Earth’s atmosphere (black dashed
line) compared with modern Mars (red dashed line) and modern Titan (blue dashed line).
The level of disequilibrium in Earth’s biosphere has increased over time, due to the increasing
complexity of life. Figure adapted from Krissansen-Totton et al. (2018).

regions show the available Gibbs free energy in Earth’s atmosphere-ocean system — you can
see that it increases over time, with two characteristic jumps. One corresponds to the GOE
(at 2.5 Ga) and one corresponds to the Cambrian explosion (at 0.53 Ga). Both of these
increases correspond directly to increases in the oxygen content of Earth’s atmosphere as
shown in Figure 17.3. As a result, the oxygenation of Earth’s atmosphere by life has driven
it to a state of disequilibrium.

Thus, if we know that life produces a state of disequilibrium, we can search exoplane-
tary atmospheres for disequilibrium chemistry and study the environment of the planet to
determine if this disequilibrium could be produced by life. Such a search for disequilib-
rium biosignatures may be feasible with JWST for rocky planets orbiting M dwarf stars.
Figure 17.5 shows transmission spectra from JWST NIRSpec/PRISM for TRAPPIST-1e
assuming an Archean-like or modern Earth-like atmospheric composition. Due to the strong
near-infrared spectral features of CO, and CHy, searching for life in chemical disequilibrium
by constraining the potential partial pressures of carbon dioxide and methane and compar-
ing to chemical equilibrium expectations is more imminently feasible than searching for the
spectral features of Oy and Oz, which are relatively weak in the near-infrared. Instead, future
missions (e.g., Habitable Worlds Observatory) that focus on studying Earth-like planets in
the optical are likely required to search for an oxygenic biosignature.
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Figure 17.5: Transmission spectra for Archean Earth-like (top) and modern Earth-like
(bottom) atmospheres on TRAPPIST-1e as observed with 10 transits by JWST NIR-
Spec/PRISM. Disequilibrium biosignatures may be detectable on Archean Earth, and oxy-
gen/ozone could be detectable with sufficient transits. Figure adapted from Krissansen-
Totton et al. (2018).

17.2.3 Biosignature false positives

Oxygen is not always produced by life. If we detect oxygen and attribute it to be due
to life when it is not, that would be a “false positive” biosignature detection. Astronomers
are expected to be skeptical, and thus we must rule out all alternative explanations before
claiming a biosignature detection.

One of the most prominent false positive oxygen/ozone biosignatures is the production
of abiotic oxygen from water loss. Water high in the atmosphere of an exoplanet can be
photodissociated by incident ultraviolet light and broken up into hydrogen and oxygen. The
hydrogen is then lost to space due to its low atomic mass, while the oxygen atoms can stick
around and form oxygen and ozone. This process (analogous to the moist greenhouse) is
expected to be especially common on planets orbiting M dwarf stars, as M dwarfs produce
more XUV radiation relative to their full bolometric flux compared to Sun-like stars (see
Figure 17.6). As a result, the process of water photodissociation will be more common on
water-rich planets orbiting M dwarf stars than Sun-like stars. This will then cause the loss
of water on planets orbiting M dwarf stars through the loss of hydrogen and build-up of
oxygen — in some (water-rich) model predictions, this process can cause the loss of tens of
Earth oceans of water and the build-up of hundreds of bars of oxygen. As a result, we expect
that abiotic oxygen production is common in the atmospheres of rocky planets orbiting M
dwarf stars.

Figure 17.7 shows a summary of some possible false positive oxygen biosignatures that
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Figure 17.6: Evolution of the XUV irradiation from M dwarf stars of various masses (left-
hand panel) from stellar evolutionary models. The right-hand panel shows the effects of
stellar XUV on water loss as a function of stellar mass and position in the habitable zone,
where the color bar shows the number of oceans lost in a nominal evolutionary model. Figure
adapted from Luger & Barnes (2015).

would occur on planets that are not Earth-like. The water loss scenario just described is listed
as “ocean loss,” but there are a variety of other possibilities for the production of oxygen
false positives. These include thin atmospheres where water can be easily transported to
low pressures and photodissocated, leading to the build-up of oxygen (“low non-condensable
gas”). These also include COa-rich atmospheres, which can lead to photodissociation of

Low non-condensable gas Habitable CO,-rich planet [T R
Any Stellar Host - M Dwarf M Dwarf
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Figure 17.7: Various scenarios to cause false-positive biosignatures for oxygen, compared
with an Earth-like case with a robust oxygen biosignature. Figure adapted from Meadows

et al. (2018).
carbon dioxide that similarly leads to the build-up of oxygen.

One might then wonder — with all these false positive possibilities, what is the path
toward detecting a robust oxygenic biosignature? Figure 17.8 lays out a flowchart that
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shows the requirements to do so. The fundamental challenge is that solely a detection of
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Figure 17.8: A flowchart showing the steps required to observationally determine if a planet
has the potential to host Earth-like life. Figure adapted from Meadows et al. (2018).

oxygen is not sufficient — we also need to characterize the environment of this biosignature,
including detections and non-detections of other species. For Earth-like life, oxygen (but not
too much) must be present in an atmosphere with methane, with some (but not too much)
carbon dioxide, and without carbon monoxide. Otherwise, it is impossible to discriminate
between the oxygen and a likely false positive. We will discuss NASA’s preferred path toward
searching for this series of biosignatures on Earth-like planets around Sun-like stars next.
However, first we’ll do a group discussion activity for each of us to think about the best way
to search for biosignatures in the atmospheres of exoplanets in our lifetimes.

17.3 Discussion activity

I will assign groups of ~ 3 for this activity. Spend ten minutes discussing the optimal
observation strategy to search for biosignatures and understand the planetary environment.
As part of your discussion, choose one preferred observational technique, e.g., transit spec-
troscopy, secondary eclipse spectroscopy, phase curves, direct imaging, or another method.
Then, come up with a < 1 minute “elevator” pitch for why this technique is optimal to de-
termine if an exoplanet is inhabited. Each group will present their elevator pitch in front of
the class, and we’ll finish by voting on our preferred observational characterization method
to search for life.
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17.4 Decadal Survey Recommendations

The Astro2020 Decadal survey was released in 2021 (due to pandemic-related delays),
and addresses the pathways for astrophysics research in the U.S.A. through the 2020s (and
beyond). The Decadal surveys are published by the National Academies of Sciences, Engi-
neering, and Medicine, and provide recommendations for U.S. funding agencies (e.g., NASA,
NSF) and the community as a whole for the science to focus on in the coming decade.
Astronomy and Planetary Science have separate Decadal surveys, but exoplanets almost en-
tirely falls under the umbrella of Astronomy. The Decadal Surveys are written by a Steering
Committee (co-chairs for 2020 were Fiona Harrison and Robert Kennicutt), with input from
Science Panels on each relevant science topic (the chair of the Exoplanets, Astrobiology, and
Solar System Panel was Vikki Meadows from the University of Washington).

There is myriad recommended astrophysics science in the Decadal survey. Most salient to
our class and to the future of exoplanet science is the recommendation that NASA construct a
large IR/O/UV space mission to directly image Earth-size exoplanets at approximately 1 au
separations from Sun-like stars. This observatory would both directly detect these planets in
reflected light, and then follow up to study the reflected light spectrum of the planet from the
UV to the IR to search for signs of life. Figure 17.9 is a summary of the evolution of Earth’s
atmosphere, showing both the abundance (in column mass) of CO,, CHy, O2, O3, and Hy,O
over time, along with the observable UV-near IR spectra of Earth during the Archean (4 -
2.5 Ga), Proterozoic (2.5 - 0.53 Ga), and Modern/Phanerozoic (0.53 Ga - present) eons. The
recommended large IR/O/UV mission would have broad UV-near IR wavelength coverge
in order to identify spectral signatures of the biosignatures oxygen, ozone, and methane as
well as the habitability indicator water and the greenhouse gas carbon dioxide. Importantly,
the detectability of these species is strongly dependent on abundance, and Earth is our only
guideline for the oxygenation of a habitable planet atmosphere. Because Earth has only had
a modern level of oxygen for ~ 538 Myr, this implies that we likely need to detect many
potentially inhabited Earth-like planets in order to measure a modern-Earth like amount of
oxygen. As we’ll discuss, this drives the requirements of the recommended large IR/O/UV
mission.

Of course, the large IR/O/UV flagship mission is not the only relevant astrophysics
project that was recommended by the decadal survey. This pioneer exoplanet mission was
recommended alongside a wide range of interesting astrophysics, including continuing to
push on gravitational wave transients and multi-messenger astronomy, building the next
generation VLA and next generation IceCube, and exploring possibilities for far-infrared
and X-ray probe missions. Figure 17.10 shows the approximate timeline of all recommended
programs, listed in order of their science category. The large IR/O/UV flagship mission has
by far the latest expected date of all of these programs, with an anticipated launch date of
the mid-2040s. This was somewhat of a departure from previous Decadal surveys, with the
Astro2020 survey not just dictating science through the 2020s but effectively through the
next three decades (and beyond). The long wait time for the large IR/O/UV mission is due
to a combination of technological challenges related to coronagraphy as well as budgetary
demands. As a result, the Decadal also described the importance of the existing HST and
JWST observatories on the pathway to characterizing exoplanet atmospheres, as summarized
in Figure 17.11. The 2020s and 2030s will likely be focused on characterizing the atmospheres
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Figure 17.9: Earth’s atmospheric composition through time (left) and resulting spectra
(right) for the Archean Earth (4 - 2.5 Ga), Proterozoic Earth (2.5 - 0.5 Ga), and Phanerozoic
(Modern) Earth (0.5 Ga - present). Figure adapted from the Astro2020 Decadal survey.

of gaseous planets, sub-Neptunes, and rocky planets orbiting M dwarf stars. Only with a
large IR/O/UV flagship can exoplanet science push toward directly imaging Earth-Sun twins
in reflected light.

The Decadal specifically recommended that the large IR/O/UV flagship have an approx-
imate inscribed mirror diameter of 6 meters. This is slightly smaller than JWST’s 6.5m
mirror, but the effective aperture size is similar due to the recommended use of an off-axis
secondary mirror. This 6m inscribed diameter was chosen in order to allow for the detection
of ~ 25 Earth-sized planets in the habitable zones of Sun-like stars, and corresponds to the
red dot in Figure 17.12. As we’ll discuss, this choice of a 6m mirror falls between other pro-
posed mission concepts (termed LUVOIR and HabEx), and is meant to be a middle-ground
between cost and performance in terms of the number of Earth-like planets that can be
characterized.

Even though the large IR/O/UV mission recommended by the decadal is a compromise,
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Figure 17.10: Recommended timeline of medium and large missions from the Astro2020
Decadal survey. The IR/O/UV Flagship on the second row is now known as the NASA
Habitable Worlds Observatory (HWO) mission concept. Figure adapted from the Decadal
survey.

it would still represent an enormous investment from NASA and the U.S. Government.
Figure 17.13 shows budget projections of each of the major recommendations from the
Astro2020 Decadal (shaded regions), along with the NASA expected budget projection (blue
line). Even though the funding for the large IR/O/UV observatory is not meant to officially
begin until 2026, it would represent the bulk of NASA’s budget integrated over the 2035-
2045 timeframe (the decade before launch). The yearly cost of this flagship would far exceed
NASA’s expected budget (by > 500 million USD). As a result, the mission would likely
require special budgetary approval by Congress for it to be feasible in the planned timeframe.

17.5 Habitable Worlds Observatory

NASA recently dubbed the large IR/O/UYV flagship mission recommended by the Decadal
the Habitable Worlds Observatory (HWO). NASA is now beginning a multi-year process of
fleshing out this mission concept, including determining potential science goals and assessing
risks. This mission would aim to detect multiple ExoEarths with direct imaging, as well as
characterize these planets to search for biosignatures and associated environmental context.
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Figure 17.11: Examples of upcoming spectral characterization of exoplanets with HST,
JWST, and HWO. The top and middle panels show simulated transmission spectra for hot
Jupiters and terrestrial planets with a combination of HST and JWST. The bottom panel
shows a simulated reflectance spectrum of an Earth twin with HWO. Figure adapted from
the Decadal survey.

17.5.1 Detecting a sample of potentially habitable ExoEarths with direct imag-
ing

The HWO mission concept and the recommendation from the Decadal are the result of
decades of work by other mission concept teams. The two most prominent mission con-
cepts to directly image Earth-sized planets orbiting in the habitable zones of Sun-like stars
pre-Decadal were LUVOIR and HabEx. LUVOIR itself had two different configurations,
LUVOIR-A and LUVOIR-B, with A having a large on-axis mirror and B having a smaller
off-axis mirror. Figure 17.14 shows the predicted ExoEarth Candidate (EEC) yield for these
two mission configurations. Both of the possible LUVOIR configurations would have used
a coronagraph hosted in the optics of the telescope itself. The HabEx mission concept,
meanwhile, proposed the use of an external occulter (“starshade”) that would formation fly
with a & 4 m diameter telescope to block the light from ExoEarth host stars. The HabEx
projections for EEC yield are shown by the yellow line in Figure 17.14. As you can see, the
number of habitable planets that would be detected by HabEx would be lower due to the
need to physically move the starshade to align it with the telescope and observe a different
stellar system. However, HabEx’s strengths are that the mirror would be smaller (and thus
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diameter for a large IR/O/UV mission from the Decadal of ~ 6 m. Figure adapted from the
Decadal survey.
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Figure 17.13: Budget projections for recommended programs from the Decadal (filled col-
ors) compared to the NASA overall budget projection (solid blue line). The large IR/O/UV
mission (now HWO) is the green shaded region that goes well above the NASA budget pro-
jection. Figure adapted from the Decadal survey.

cost likely lower) and that the starshade may more efficiently reduce the contrast down to
the ~ 1071 level required to detect an Earth-sized planet around a Sun-like star at 1 au in
reflected light.

HWO is planned to have a broad wavelength range covering from the near-UV to the
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Figure 17.14: Expected ExoEarth candidate yield for the LUVOIR-A and LUVOIR-B
configurations assuming 7g = 0.24. Shaded regions correspond to different mission archi-
tectures, including segmented or monolithic mirrors, on-axis or off-axis secondaries, and
including the possibility of a starshade. Figure adapted from the Decadal survey, originally
from the LUVOIR final report.

near-IR. This was also planned in each of the LUVOIR and HabEx mission concepts, and is
motivated in order to detect myriad biosignatures, habitability indicators, and other species
that better provide environmental context for a purported biosignature. Figure 17.15 shows
a list of various biosignatures and false positive discriminants, as well as their relevant
absorption features in the UV-Visible and near-IR. The key motivation for including the UV

Table 3-1. Desired spectral features for biosignature assessment.

Biosignatures & False Positive Discriminants (indicated with *)

Molecules/Feature UV-VIS wavelengths (0.2-1.0 um) NIR wavelengths (1.0-2.0 um)
| 0.2,0.63, 0.69, 0.76 (strong) 1.27
L 0.2-0.35 (strong), 0.5— 0.7
0,(0,-0,)* 0.345,0.36,0.38,0.45,0.48,0.53,0.57, 0.63 1.06, 1.27 (strong)
0* 1.6
% 1.05,1.21,1.44,1.59
(H, 0.6,0.79,0.89, 1.0 1.1,1.4,1.7
N0 15,1.7,1.78,2.0
Organic haze <05
Vegetation red edge 0.6 (halophile), 0.7 (photosynthesis)

Figure 17.15: Potential biosignature spectral features of interest for LUVOIR, along with
their associated wavelengths in the UV-visible and near-infrared. Figure adapted from the
LUVOIR final report.
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is to include the strong Hartley-Huggins bands of ozone between 0.2 — 0.35 pm. The visible
has a range of Oy and Oj3 spectral features, as well as methane features, and the possibility
of detecting evidence for a “red edge” due to photosynthetic vegetation on the surface. The
near-IR is required largely to detect habitability indicators and false positive discriminants,
including water, carbon dioxide and carbon monoxide, and methane. The exact planned
wavelength coverage and instrument modes of HWO are currently being determined as part
of its mission concept phase.

17.5.2 Characterizing ExoEarths: reflectance spectra, rotational mapping

Figure 17.16 shows a simulated spectrum which approximates that expected from HWO
for an Earth-twin around a Solar-twin. There is a clear ozone feature in the UV, multiple
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Figure 17.16: Simulated reflectance spectrum of Earth around the Sun. Clear absorption
features of ozone, oxygen, and water are seen in the UV-visible, and signatures of water and
carbon dioxide occur in the near-infrared. Figure adapted from the Decadal and LUVOIR
final report.

oxygen features in the visible, water features in the visible/near-IR, and carbon dioxide
in the near-IR. The need to both detect biosignatures, signs of water vapor (and thus a
potential surface ocean) and characterize the atmospheric properties through constraining
the level of carbon dioxide is what drives the simulated wavelength range. Generally, it is
expected that the approximate wavelength range of HWO will be 0.2 — 2 pum, with wiggle
room depending on instrument and detector design along with science requirements to rule
out possible biosignature false positives.

Beyond the time-integrated reflectance spectrum alone, there is a range of other science
that can be done for Earth-like planets with HWO. One of the most compelling is rotational
phase mapping of these planets in order to study how their albedo (reflectance) varies with
rotational phase. An example of this using Earth itself is shown in Figure 17.17. From these
reflectance rotational phase curves, the rotation period of the planet can be constrained if
there are spatial albedo variations. Additionally, a rough surface map of the planet can be
made by matching the albedos of various surfaces. Figure 17.17 shows the specific example of
using ocean glint during the crescent phase to identify the presence of a liquid water ocean,
and that the location of the liquid water ocean approximately matches with the Atlantic and
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Figure 17.17: Results from simulated mapping of the surface of Earth in reflected light
with a HWO-like mission. Multiple surface features with different albedos are inferred with
longitudinal variation, corresponding to continents and ocean. A liquid ocean is inferred
through the presence of glint, which significantly increases its apparent albedo near crescent
phase. Figure adapted from Lustig-Yaeger et al. (2019).

Pacific ocean basins for a simulated Earth test case. As a result, rotational phase mapping
could directly probe the habitability of rocky exoplanets by searching for the presence of
surface liquid water.

17.6 Prediction activity!

Given its technological complexity, the Decadal survey only provides a rough timeline for
the IR/O/UV Flagship (now known as Habitable Worlds Observatory). Let’s get in small
groups to discuss and make some predictions to then see where we, as a class, stand in terms
of our expectations for the long-term future of the search for life on exoplanets. Discuss the
following questions in groups of ~ 3:

1. What year do you think the Habitable Worlds Observatory will be launched in?

2. Do you think a robust biosignature will be detected before the Habitable Worlds Ob-
servatory is launched? If so, what method (and/or observatory) do you think will
detect this biosignature?

3. How many Earth-like exoplanets orbiting Sun-like stars do you think the Habitable
Worlds Observatory will detect?

4. Do you think that Habitable Worlds Observatory will detect life on an exoplanet? If
so, how many inhabited planets do you think it will find?

5. Assuming the Habitable Worlds Observatory does find Earth-like planets with a sign
of life, what type of signature do you think the Habitable Worlds Observatory will
detect? Options include but are not limited to oxygen with environmental context,
disequilibrium biosignature, technosignature, something unexpected, etc.
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18 Exoplanet characterization: transmission spec-
troscopy

Enclosed are notes that you may find helpful to review before or after Dr. Munazza
Alam’s lecture on transmission spectroscopy. Today’s reading is the Kreidberg review chapter
on transmission spectroscopy. This will detail the principles of transmission spectroscopy as
well as how it can be used to characterize exoplanet atmospheres.

18.1 Fundamentals of transmission spectroscopy
18.1.1 Qualitative description

Transmission spectroscopy probes the atmospheres of exoplanets by studying the trans-
mission (or filtering) of light from the host star through the limb of an exoplanet that appears
to occult the host star. Figure 18.1 shows the geometry of a transit event, along with the
geometry of the secondary eclipse that is used to derive planetary emission spectra (as we’ll
discuss in the next class). Transmission spectra can thus only be observed for transiting

starlight filters planet thermal
through planet emission and
atmosphere reflection blocked
during transit during eclipse

H

Figure 18.1: Geometry of transmission and emission observations. Here the stellar radius
is IR, planet radius is 17, the separation of centers of planet and star is d, and the pressure
scale height of the planet’s atmosphere is H. Figure adapted from Kreidberg (2017).

exoplanets, and are generally a small effect (at most on the orders of parts per thousand) on
top of the larger transit signal. Similarly to the transit method itself, transmission spectral
signatures are larger for planets orbiting smaller stars. However, there is also a strong de-
pendence of the transmission spectra signal on the atmospheric composition, temperature,
and gravity of the orbiting planet, which we derive below.

18.1.2 Transmission flux ratio

The transmission spectral features are a small atmospheric contribution imprinted on
top of the total transit depth. Recall that the transit depth for the solid-body planet is
§ = (R,/Rs)?. The transit depth including the atmospheric contribution is then

(Rp + A H, )\)2

8y = e (18.1)
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where Ay y is the apparent atmospheric height which is being probed. We can write the
apparent atmospheric height as a number of scale heights, i.e.,

T
9

where H is the (isothermal) pressure scale height. As a result, we can isolate the transmission
spectral feature amplitude (i.e., the contribution due to the atmosphere alone) as
5 (R, +nH)* R 2RnH _2R,nRT
mcoUUR R OR T gR:

(18.3)

Typically, n ~ 2 for low spectral resolution observations of cloud-free atmospheres (Krei-
dberg, 2017). As a result, we expect the transmission spectral feature amplitudes to be
larger for hotter and lower-gravity planets, which have a larger scale height. We also expect
transmission spectral features to be larger for low mean molecular weight atmospheres, as
decreasing mean molecular weight increases R, which also increases the scale height. Note
that our derivation does not include the effects of clouds, which also mute spectral features
by increasing the optical depth of the atmosphere at low pressures — see the next section.

18.1.3 Beer’s law

Consider radiation with an initial radiance at a given wavelength I, that impinges upon an
absorbing and emitting slab that has mass density p, absorption coefficient k,, and thermal
radiance B). Lambert’s law states that this slab absorbs radiation, causing a decrease in
radiance leaving the slab (at distance dl) of

dI, = — I k\pdl Lambert's law. (18.4)

Similarly, Kirchhoff’s law states that substances in thermodynamic equilibrium emit as effi-
ciently as they absorb, so the change in emitted radiation must be

dI, = Bykypdl Kirchhoff’s law. (18.5)

Putting these together, we can write Schwarzschild’s equation for radiative transfer ignoring

scattering,

dl
d_l)\ = pkx(By — I,) Schwarzschild's equation. (18.6)

This equation tells us how the radiance from the slab is affected by a combination of absorp-
tion and emission. If we further define the optical path 7 as

l
T = J pkadl, (18.7)
0

we can re-write Schwarzschild’s equation as

2 _ By -1, (18.8)
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] “
Figure 18.2: Geometry used to derive the slant optical path of transmission through an
atmosphere. Figure adapted from Fortney (2005).

In the case where the medium is purely absorbing, B, = 0 and we can integrate to solve for
the radiance as a function of optical path as

Iy = I,(0)e™™ Beer's law. (18.9)

Beer’s law can be applied to transmission geometry, as in most cases we can ignore the
atmospheric emission contribution to the transit depth. This then allows us to relate the
observed flux deficit to an optical path, and thus a region in the atmosphere that is probed
via transmission spectroscopy, given that regions with 7 > 1 are opaque to transmitted
starlight.

Note that here 7 is the slant optical path through the limb of the planet, rather than the
optical depth derived previously for light travelling in the vertical direction toward and away
from the planetary surface — this slant optical path is significantly larger than the typical
optical depth, which is why transit spectra probe relatively low pressures compared to emis-
sion spectra. Figure 18.2 shows the geometry of the slant optical path (in the direction of z)
relative to the vertical optical depth (in the direction of z). We will now follow the derivation
in Fortney (2005). Recall that an isothermal atmosphere in hydrostatic equilibrium has a
dependence of pressure p and equivalently number density n on height above a given level
Zo as

) =t e (~E 7).
) = nla) oxp (572,

where H = RT'/g is the pressure scale height, which is equal to the density scale height for
an isothermal atmosphere. From Figure 18.2, we can note that

(18.10)

a’ + 2% = (a+2)* = a® + 2az + 2% (18.11)

If 2az » 22, then 2z ~ 2%/2a. As a result, we can write the dependence of number density on
T as

n(z) = no exp <—2zj{) . (18.12)
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If we integrate this dependence over x to find the integrated density Ny from horizon to
horizon, we find

o0 1 xT o0
Vi = [ ntoyde = nogvavaadt e (2= )| = novenadi (18.13)

The ratio of the horizontally integrated density to the vertically integrated density is equal
to the ratio of the horizontal to vertical optical path. This is

Nu _7n _ [2ma (18.14)

NV TV H
Because a >> H, this value is always much larger than one — for Earth it is ~ 75, and for
Jupiter it is ~ 128. Generally speaking, due to the high slant optical path, transit spectra
probe low pressures of ~ 1 mbar, with higher resolution observations probing even lower
pressures in absorption lines. This also causes condensate clouds and hazes to have a large
impact on the depth of transmission spectral features, as they move the continuum (deepest
region that can be probed) to lower pressures (Fortney, 2005).

18.1.4 Application to observed spectra: example of WASP-43b

Figure 18.3 shows a transmission spectrum observed with the Hubble Space Tele-
scope/Wide Field Camera 3 (HST/WFC3) (bottom) of the hot Jupiter WASP-43b. This

Figure 18.3: Emission spectrum (top)
and transmission spectrum (bottom) of
WASP-43b observed with the Hubble
Space Telescope Wide Field Camera 3
instrument (inset on top shows observa-
Wavelorgth (i) ~ tions with the Spitzer Space Telescope).
Note the spectral feature (bump) in the
transmission spectrum at 1.4 pum due
to water vapor absorption, which also
causes an absorption feature (dip) in
the emission spectrum. Figure adapted
from Kreidberg (2017).
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shows the change in transit depth as a function of wavelength, i.e., isolating only the at-
mospheric contribution Ay to the total transit depth. There is a bump in the spectrum
at a wavelength of 1.4 um. This bump corresponds to an increase in the effective transit
depth, i.e., an increase in the effective size of the planet at 1.4 pm. As a result, this is an
absorption feature, as the planet absorbs more light at 1.4 ym than at other wavelengths in
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the instrumental range. Note that this bump in the transmission spectrum at 1.4 pym aligns
well with a dip in the emission spectrum (top) at the same wavelength. We’ll cover emission
spectra soon, but this dip in emission spectra similarly corresponds to an absorption feature
due to the same species causing the bump in the transmission spectrum.

Given a transmission spectral feature at a given wavelength, astronomers can then in-
fer the species that is causing this feature by comparing with model atmospheres. The
wavelength-dependence of the atmospheric absorption is determined by the absorption cross
section of a given species o, which (as we discussed in the gas giant interiors class) is related
to opacity K as

nox = Kxps (18.15)

where subscripts indicate a wavelength-dependence. Figure 18.4 shows the dominant cross-
sections in a typical hot Jupiter atmosphere in chemical equilibrium at Solar metallicity, a
temperature of 1500 K, and a pressure of 300 mbar. The strongest feature near 1.4 pum
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Figure 18.4: Cross sections of various species in a Solar composition atmosphere of a hot
Jupiter at a pressure of 300 mbar. Note the strong features due to water vapor and carbon
monoxide in the near-infrared. Figure adapted from Kreidberg (2017).

is due to water vapor absorption, which we can identify as the absorber in the WASP-
43b HST/WFC3 transmission spectrum. Note that the species which dominates absorption
cross-sections is strongly dependent on wavelength, with water vapor, carbon dioxide, and
methane (greenhouse gases that reduce Earth’s outwelling radiation) being most important in
the near-infrared, and sodium and potassium having significant contributions in the visible.

18.2 Highlights of transmission spectroscopy

The first detection of species in the atmosphere of an exoplanet (and thus, detection of an
atmosphere itself) via transmission spectroscopy was for the exoplanet HD 209458b with the
Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) instrument

134



(Charbonneau et al., 2002). Figure 18.5 shows this detection, in terms of the number of
photoelectrons received from the spectrograph as a function of wavelength. Note that this

1.6x10°
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photoelectrons

1.2x10°

1.0x10°

585 590 595
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Figure 18.5: First detection of an exoplanet atmosphere. Shown are the transmission
spectral features of the Na doublet at 589 nm in the atmosphere of HD 209458b as observed
with HST/STIS. Figure adapted from Charbonneau et al. (2002).

y-axis goes in the opposite direction of the current convention for transmission spectroscopy
— here absorption is a dip rather than a bump in the spectrum. This HST/STIS spectrum
shows clear absorption due to the Na doublet centered at 589 nm, and thus an indication of
an absorbing atmosphere of this hot Jupiter. Notably, the depth of these spectral features
was smaller than expected for a clear atmosphere. This implies that aerosols increase the
height of the atmosphere’s continuum, reducing the depth of these Na spectral features.

The most precise transmission spectrum of a sub-Neptune is the HST/WFC3 spectrum
for GJ 1214b (Kreidberg et al., 2014). Figure 18.6 shows the spectro-photometric tran-
sit observations of this planet from 1.15 — 1.63 pm, which is directly measured, here from
co-adding 15 transit observations together. The relative transit depth as a function of wave-
length is then measured from these transit observations at varying wavelengths, and turned
into the transmission spectrum shown in Figure 18.7. The measured transmission spectrum
of GJ 1214b with HST/WFC3 is consistent with a flat line, with no evidence for absorption
by either Solar composition atmosphere (top panel) or even atmospheres comprised of high
mean molecular weight species like water, methane, or carbon dioxide. This implies that
GJ 1214b has a high-altitude aerosol layer that is roughly wavelength-independent (“gray”)
in the WFC3 bandpass that prevents transmission spectral observations from probing the
absorption of the gaseous species in the atmosphere. This is one of many instances of clouds
impacting the transmission spectra of exoplanets, and generally speaking transmission spec-
tra have found that clouds are ubiquitous in exoplanet atmospheres.

The state of the art of transmission spectral observations is with JWST, as evidenced
by the early release science (ERS) observations of the hot Jupiter WASP-39b. Figure 18.8
shows the NIRSpec/PRISM transmission spectrum of WASP-39b (with a single transit!)
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Figure 18.6: Spectro-photometric transit
observations of GJ 1214b with HST/WFC3
from 1.1 — 1.7 um. Figure adapted from Krei-
dberg et al. (2014).
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by the JWST ERS team (Rustamkulov et al., 2023). This is a broadband visible-NIR
transmission spectrum from 0.6 —5.3 pm, significantly expanding on the wavelength coverage
of the HST/WFC3 instrument. Given the broad wavelength coverage, detection of a variety
of species is enabled, including a large carbon dioxide feature centered at 4.2 pm, clear
water absorption features at multiple wavelengths, sodium in the visible, and SOs at 4 pm.
Notably, the SO, can only be produced by photochemistry (i.e., it does not occur in chemical
equilibrium for this planet) — this is the first direct evidence of photochemistry in an exoplanet
atmosphere. There is also evidence for a high continuum level of the spectrum, due to an
aerosol (cloud) deck preventing transmission to deeper levels.
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15 transits with HST/WFC3. Figure adapted from Kreidberg et al. (2014).
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Figure 18.8: The transmission spectrum of the hot Jupiter WASP-39b observed with one
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SO, along with a cloud deck. Figure adapted from Rustamkulov et al. (2023).
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19 Exoplanet interiors: terrestrial planets
Our agenda for Day 19 is the following:

1. Heat transfer via conduction (15 minutes)

2. Cooling timescale of Earth activity (25 minutes)

3. Heat transport in rocky planet interiors: Rayleigh-Bernard convection (25 minutes)
4. Exoplanet mass-radius relationships: dependence on composition (10 minutes)

Today’s reading is the Sotin review chapter on terrestrial planet interiors. This will provide
a comprehensive overview of expectations for the interior structure and heat transport of
rocky exoplanets.

19.1 Earth’s internal structure

A schematic of the interior structure of Earth is shown in Figure 19.1. Earth’s solid

Hot spot

Mid-oceanic 1
ridge

o~

Subduction
zone

Figure 19.1: Schematic of the regions of Earth’s interior that behave like a fluid, on which
the continents and oceanic crust float isostatically. Figure adapted from Sotin et al. (2010).

component can be broken into five primary layers, from the surface inward: 1) crust, both
continental and oceanic; 2) an upper mantle, comprised dominantly of olivine and enstatite;
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3) the lower mantle, comprised dominantly of perovskite and periclase, with a transition
to post-perovskite near the bottom of the mantle; 4) a liquid metal outer core; 5) a solid
inner core. The relative extent and characteristic density profile of each of these layers
are shown in Figure 19.2, which displays the Preliminary Reference Earth Model interior
structure derived from seismology. Note the sharp transitions in density between each of
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Figure 19.2: Preliminary Reference Earth Model (PREM) of the interior density distribu-
tion of Earth. Note the sharp discontinuities in density at the boundary between the solid
inner core and fluid outer core, core-mantle boundary, and mantle-crust boundary (Mo-
horovici¢ discontinuity).

these layers, including the Mohorovici¢ discontinuity between the crust and mantle, CMB
between mantle and core, and liquid-solid phase transition between the outer and inner core.
These transitions occur because Earth’s interior is differentiated, a process which is expected
to be ubiquitous for rocky planets due to gravitational segregation during the early stages
of planet formation, as they form hot and cool over time.

19.2 Heat transfer via conduction

In solid rocks, conduction is the transfer of thermal energy by vibrations in the lattice
of the solid material, with heat transported from regions of high temperature to regions
of low temperature. Note that no bulk movement of material occurs during conduction,
instead heat flows down-gradient from small-scale thermal interactions via a random-walk
(i.e., diffusive) process. Fourier’s law of conduction states the the heat flux F carried by
conduction is related to the thermal conductivity k£ and temperature gradient V1" as

F = —kVT, (19.1)

where the thermal conductivity & has SI units of W/(mK), with typical values of ~ 1
W/(mK) for rock.
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Heating via conduction can be related to the divergence of the conductive heat flux as

or
Py o = -V-F+Q,

orT
permr = V- (VT) + Q.

(19.2)

where in the latter expression we have substituted Fourier’s law. Dividing through by pc,,
assuming constant k£, and expressing the thermal diffusivity

K=—), (19.3
PCp )

we can write a diffusion equation for heat conduction as

oT
— =rxV*T + @ (19.4)
ot PCp
As a result, when ignoring sources, heat conduction is a purely diffusive process. The char-
acteristic diffusion timescale of thermal conduction is governed by the thermal diffusivity
h?
T~—, 19.5
- (19.5)
where h is the thickness of the cooling structure. We can estimate the thermal diffusivity as
a product of a velocity and a mean-free path

K~ vl, (19.6)

where the speed of lattice vibrations (the diffusing quantity) is the speed of sound, and the
mean free paths are comparable to the inter-atomic spacing.

19.2.1 Cooling timescale of Earth activity

Let’s estimate the typical thermal diffusivity of rock to see how long it takes heat to
escape Earth’s interior by conduction through the oceanic crust. If we completely ignore
heat production in the interior (see next section), in principle this could constrain the cooling
age of the interior of Earth, but as you’ll find there must be some other mechanism evicting
heat from Earth’s interior.

1. Assume that the speed of sound in rock in Earth’s mantle is 4 km s™!, and that the
mean free path of lattice vibrations are 3 A. Estimate the thermal diffusivity of Earth
mantle rock x in m?/s.

2. Earth’s continental crust is ~ 40 km thick. Estimate the timescale for heat to diffuse
through Earth’s crust using your calculated thermal diffusivity. Compare this to the
age of the Earth.

3. Now calculate the cooling timescale to transport heat from the center of Earth to the
surface. Compare this to the age of the universe.
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19.2.2 Historical background: Kelvin’s folly

In the 19th century, Lord Kelvin used conduction to estimate the age of the Earth, by
calculating its characteristic Kelvin-Helmholtz cooling timescale from the heat flux that can
be carried by conduction. He estimated the age by assuming that the Earth formed at an
uniform hot temperature 7; and that its surface is maintained at a lower temperature Tj,
and that heat conduction was transferred through a thin near-surface boundary-layer at a
thermal gradient (d7'/dz)y that can be measured by studying the thermal gradient below
the surface of Earth. Using these, he estimated the age of Earth as

(T; — Tp)?
to =

= ———— ~ 65 Myr. 19.
mr(dT /dz2)3 65 Myr (197)

Of course, this turned out to be erroneous, as the age of Earth is ~ 4.5 Gyr. This is because of
two reasons: 1) a significant fraction of Earth’s internal heat budget is caused by radiogenic
heat production (see Figure 19.3), which he did not know about at the time, 2) the interior
of Earth transports heat by a combination of conduction and convection, which significantly
changes the heat flux out of the interior. We’ll next turn to develop a more realistic model

1

1
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H, 1012 Wkg" 20

10

. Ga «— Past Present

Figure 19.3: Total heat production rate in the mantle of Earth (solid line), along with
contributions from uranium, potassium, and thorium (dashed lines) as a function of time
before present. Figure poorly photocopied from Turcotte & Schubert (2002).

of the internal heat flux of Earth where heat is transported by convection in the mantle, but
the heat evicted out of the interior is set by conduction through a “boundary layer” of crust.

19.3 Convective heat transport
19.3.1 Rayleigh-Bernard convection

Convection can occur in a fluid if it is sufficiently buoyant that the overturning timescale,
Tover duie to buoyancy-driven motion is shorter than the timescale required for the heat to
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thermally diffuse (conduct), 74¢. That is, if

Tover < Taif convection, (19.8)

Tover > Taif conduction,
which is notably analogous to the Schwarzschild criterion for heat transport in gaseous
planets (Equation 16.11), but here thermal conduction through lattice vibrations takes the
role of diffusion of photons via radiative heat transport. The overturning timescale can be

related to the ratio of the dynamic viscosity n = vp (where v is the kinematic viscosity,
which we discussed previously when covering disks) and buoyancy as

Ui

over ~ 5 19.9
. Apah (19.9)

where Ap represents the difference in density over a height of thermal perturbations in the
fluid A. The time to erase thermal anomalies by diffusion is

h2
Tdiff ~ (19.10)
K

which you’ll note is equivalent to the conduction timescale discussed previously. As a result,

we can write that for thermal convection to occur
h2
ﬁ <— (19.11)

If we let Ap = apAT where « is the thermal expansivity and AT is the temperature drop
across the height h, we can re-write the criterion for convection as

apgATh?
Nk

The expression on the left hand side is the definition of the non-dimensional fluid Rayleigh
number Ra, which is the ratio of the diffusion to overturning timescale

> 1 for convection. (19.12)

_ apgATh?
=

In reality, our simple analysis requires an additional numerical factor, such that convection
only occurs for Rayleigh numbers above a critical value

Ra (19.13)

Ra > Ragge ~ 10% for convection. (19.14)

We can further define one other non-dimensional number that will be important for charac-
terizing convection, the Nusselt number. The Nusselt number is the ratio of heat flux to the
heat flux that would be transported by conduction alone, i.e.,

F F

Nu = = 19.1
U= T AT (19.15)

the latter expression of which is valid if the thermal conductivity k is a constant. For Earth’s
mantle, Nu ~ 30.
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19.3.2 Boundary layer convection

In reality, the heat flux out of the mantle to the surface of Earth is not evicted by
convection, but via conduction through a thin boundary layer, Earth’s crust. Similarly, heat
transport from the core to the mantle is not regulated by convection, but through conduction
through the bottom of the mantle. As a result, Earth’s mantle undergoes Rayleigh-Bernard
convection in a layer sandwiched between a hot thermal boundary layer at the bottom and
a cold thermal boundary layer at the top, as shown in Figure 19.4.
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Figure 19.4: Schematic of boundary layer convection, with a (Rayleigh-Bernard) convec-
tive interior sandwiched between a hot bottom conductive boundary layer and a cold top
conductive boundary layer. Figure adapted from Turcotte & Schubert (2002).

As a result, to order-of-magnitude, the flux transported out of the interior is that con-
ducted across the top thermal boundary layer,

[ kAT

19.1
=, (19.16)

where ¢ is the thickness of the boundary layer. To determine the boundary layer thickness,
we can estimate the maximum thickness over which it will not convect — i.e., where the
diffusion time §?/x will be less than the overturning time of the boundary layer n/(Apgd).

This is the same as the criterion for Rayleigh-Bernard convection, but now with a local
Rayleigh number required for boundary-layer peel away:

Ralocal > Racrit

ATH 19.17
M > 1:{acrit- ( )
nKk

We can then realize that boundary-layer peel away is also required for convection to occur,
so the condition for boundary-layer peel away is also approximately the same criterion for
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convection to occur in the first place. As a result, boundary-layer convection occurs when

AT 3 3
apgato” g o (19.18)

R crit < .
it Nk h?

We can re-arrange to solve for the boundary-layer thickness as

13
5~ h <%> , (19.19)
a

the resulting heat flux transported through the boundary layer to the surface

AT kAT e
Fo AR (Rf;»a) | (19.20)
and the Nusselt number 1/3
F R
Nu= (Raa't) _ (19.21)

More generally, depending on the numerical simulation and details of the system of interest,
a power-law relationship is found between the Nusselt number and Rayleigh number,

Nu = aRa”, (19.22)

with § ~ 0.1 — 0.4. When coupling this boundary-layer convection model to a thermal
evolution model (beyond the scope of this class, but see Komacek & Abbot, 2016 for an
example including volatile cycling), the resulting temperature structure of the interior of
a planet contains three regions: a hot and a cold boundary layer with strong temperature
gradients, and a nearly isothermal adiabatic interior. This thermal structure that results
from boundary-layer convection is shown in Figure 19.5, which provides a rough first-order
model of the geotherm.
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19.4 Rocky planet mass-radius relationships

Due to the radius gap between sub-Neptunes and super-Earths that we discussed previ-
ously (Fulton et al., 2017), it is expected that planets with radii < 1.6 Rg are mostly rocky,
while planets that have larger radii may be either rocky or volatile-rich (icy), and likely host
a gaseous envelope. Figure 19.6 shows the mass-radius diagram of observed exoplanets with
M < 10 Mg, along with the terrestrial Solar System planets Mars, Venus, and Earth. Inter-
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Figure 19.6: Mass and radius measurements for exoplanets (open circles) and Solar System
planets (filled circles), compared with mass-radius curves for varying planetary compositions.
Only exoplanets with 5o mass measurements are plotted. The horizontal dotted line marks
the radius gap above which planets generally retain significant hydrogen envelopes. Figure
adapted from Wordsworth & Kreidberg (2022).

estingly, the vast majority of rocky planets with well-measured masses and radii less than
1.6 Rg lie fairly close to an Earth-like compositional mass-radius relationship, with only a
few planets to date requiring less metal or an envelope of ices to explain their radius. How-
ever, as we go to larger radii greater than 1.6 Rg there are a diversity of planetary densities,
with some (large super-Earths) still being well-explained by an Earth-like bulk composition
and others (sub-Neptunes) being explained by either a pure water or icy composition (known
as “waterworlds”) or a combination of a rocky core and a hydrogen envelope. As a result,
the composition of sub-Neptune sized exoplanets is strongly degenerate, with many objects
being equally well explained by either a waterworld or a rocky core with a hydrogen/helium
envelope. Observational characterization is required (e.g., via transmission and emission
spectroscopy with JWST) to determine the planetary atmospheric composition and thus
better constrain the bulk composition in order to test these two compositional hypotheses
to determine if one is dominant or if sub-Neptunes have a bi-modal distribution of bulk
compositions.
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20 Exoplanet characterization: emission spectroscopy
Our agenda for Day 20 is the following:

1. Secondary eclipse depth (10 minutes)
2. Thermal structure, formation of absorption and emission features (30 minutes)
3. Example: WASP-18b with JWST (5 minutes)

4. Emission spectra activity on WASP-18b with JWST (30 minutes) — be sure to bring
your computer and download the .zip file from ELMS in advance!

Today’s reading is the Deming review paper on how to characterize the atmosphere of a
transiting exoplanet. This will both introduce the concept of emission spectroscopy via
secondary eclipse measurements as well as how to combine measurements of emission and
transmission spectroscopy to better constrain the atmospheric properties of exoplanets.

20.1 Secondary eclipse depth

The secondary eclipse occurs when the planet is occulted by the star. By measuring the
differential flux between when the planet is not occulted by the star and we see F' = F, + F),
and when the planet is occulted and we only see F,, we can measure the planetary flux alone.
The eclipse depth is then

F F
Jocl = P_ 22 20.1
1 Fp +F3 F*a ( )

where we have assumed that the planet is much dimmer than the star in the wavelength

region of interest. Given that the flux of the planet and star is F' = B(T, \) R?, where B(T, \)

is the Planck function, we can express the secondary eclipse depth as
F, Bp(T, )\)R}% R?; ehe/ RTw _ 1

5ec1 m =

F.~ BJAT,NRZ  RZhNT, —1° (20.2)

Note that the ratio of exponentials is always < 1 (because stars are hotter than their planets),
so the secondary eclipse is always smaller than the primary eclipse. At long wavelengths in
the Rayleigh-Jeans tail, we can approximate the eclipse depth as F},/F, ~ T, /T, R2/R?.

First, note that the eclipse depth is a wavelength-dependent differential measurement
that depends very strongly on the relative radii and temperatures of the planet and star.
Thus, eclipse depths will be much larger for hotter and larger planets — for hot Jupiters, they
can be on the order of percent, but for cooler planets they can be on the order of a few ppm.
Additionally, F,/F; typically increases with wavelength due to the shorter wavelength peak
of the stellar blackbody, implying that longer infrared wavelengths are preferred to search
for secondary eclipses.

The first measured secondary eclipse was by UMD faculty member Drake Deming in
2005 for the planet HD 209458b (Deming et al., 2005, see Figure 20.1), coincident with
the detection of a secondary eclipse for TrES-1b (Charbonneau et al., 2005). Both papers
even have the same name — “Detection of Thermal Emission from an Extrasolar Planet”!
Since then, wavelength-dependent eclipse depths (or “emission spectra”) have been used to
characterize planets with a range of observatories.
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Figure 20.1: Detection of a secondary eclipse on HD 209458b with Spitzer at 24 pum by
Deming et al. (2005). The top panel is the raw data, the middle panel shows binned data
with best-fit eclipse model, and the bottom panel shows histograms of the binned intensity.

20.2 Linking emission to thermal structure
20.2.1 Solutions of the radiative transfer equations

Recall from our transmission spectra notes that we can write Schwarzschild’s equation
for radiative transfer ignoring scattering as

dly

2= kx(Bx — I) Schwarzschild's equation (20.3)
in length coordinates, or equivalently in optical path coordinates as
dly
—=1,—-B 20.4
d7~_ A A ( )
or optical depth coordinates as
dl
p—= = I, — By, (20.5)
dr

where 1 = cosfl, with 6 the zenith angle between the light path and the vertical in the
atmosphere. Moving forward, we’ll use optical path coordinates and drop the tilde for

147



simplicity. We previously considered atmospheres with no emission to derive Beer’s law for
transmission, but now we will consider atmospheres with emission.

First, let us consider an isothermal medium where B, is constant. We can change vari-
ables to simplify our derivation, using

X =1\ — By

(20.6)
Thus, we can write Schwarzschild’s equation with the change of variable as
dx
— = —x. 20.7
=X (20.7)
Integrating, we find
X = Xo€ . (20.8)

Plugging back in for our change of variables, we find the isothermal solution of
Schwarzschild’s equation:
I, =B, + (I)\<0) — B)\) e . (209)

Let’s consider some limits of this isothermal solution. When the optical path is very small
(1 — 0), the radiance is the same before and after entering the slab. When the optical path
is very large (17 = o), I\ = B, — that is, an infinitely opaque isothermal medium acts as a
blackbody. Finally, if I,(0) = 0, then Iy = B)(1 — e "), and the radiance e-folds toward a
blackbody with increasing optical thickness.

There is also a general solution to Schwarzschild’s equation ignoring scattering. To derive
it, we can use an integrating factor e” such that

d
E(QTI,\) = €' By, (20.10)
and thus N
" I\|7 = f " Bydr'. (20.11)
0
One can then rearrange to find the general solution to Schwarzschild’s equation,
In(T) = 1,(0)e™" + f e” " Bydr. (20.12)
7=0

Note that the first half of the right hand side is simply Beer’s law, and the second half is the
additional contribution from thermal emission.

20.2.2 Photosphere pressure

It’s clear from the above derivations that the optical depth (equivalent to the optical path
if 4 = 1) is a critical parameter for estimating radiative properties of planetary atmospheres.
If the optical depth 7 » 1, then the region is optically thick and I, ~ B,. If the optical
depth is 7 « 1, the region is optically thin and I, ~ I,(0). However, if 7 ~ 1, then both
incoming starlight is absorbed and radiation escapes to space — this special region of the
atmosphere is called the “photosphere.”
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Figure 20.2: Cartoon demonstrating how absorption and emission features arise from non-
inverted and inverted temperature pressure profiles, respectively.

We can estimate the photosphere using the definition of optical depth,

. p
TAal= J rapdz = K\=—. (20.13)
z g
If we assume that the opacity is constant and use hydrostatic equilibrium (—pdz = dp/g, we
can estimate the photosphere pressure
Py~ 2L (20.14)
KX

For a typical hot Jupiter with ¢ = 10 m s™2 and kg = 4 x 1072 cm? g¢~1, pir ~ 0.25 bars.

Typically the photosphere is at the ~ 100 mbar — 1bar pressure level for irradiated planets.
20.2.3 Absorption and emission features

The temperature-pressure profile can be directly probed by measuring spectral features
in secondary eclipse spectra. Figure 20.2 demonstrates how the temperature-pressure pro-
file is coupled to spectral features. In non-inverted atmospheres where the temperature
decreases with increasing pressure, spectral features appear as dips in the eclipse depth at
the wavelengths where the opacity from absorbers is large. This is because the radiatively
active molecules absorb the thermal emission from below and re-emit it at their (cooler)
local temperature, causing a reduction in the planetary flux at that wavelength. In this case,
molecule 2 has a larger relative dip (i.e., a larger absorption feature) because it is optically
thick at lower pressures than molecule 1.

Conversely, in thermally inverted atmospheres there is a bump, or emission feature,
rather than an absorption feature. This is because the molecules now are re-emitting the
radiation they absorb at hotter local temperatures, causing an increase in the planet flux in
the wavelengths at which they are opaque. Thus, one can estimate the temperature-pressure
profile and chemical abundances together from an observed secondary eclipse observation,
as you'll see in our activity.

149



4000 $ NIRISS/SOSS, R = 50 ® HST - TESS + Spitzer

a
broadband
35001 10009 ¢
30001 01 A=172um
' 25009 20004, _ 4 65 um \
g 1000 4 . N\ —
— 2000 4 N 3
o 01 . g \ 3000 4
> A\ «
w 1500 . . . ° . 20001 &)Cw(p oo p <
-4~ -2 0 2 co(g ° goel o
1000 - time from'mid-eclipse [h] 10004 ° .
) C e oo
01
5001 A =277 pm J Fopl
—1000 08@’?&%
354b '{>
———- T=3050K
3.0 —.— T=2950K

------- T=12850K

N
v

N
o

=
wn

Iy
o

b
)

thermal emission [10® W/m?2/um]

©
o

08 10 15 20 25 30 40 5.0
wavelength [um]

S
o

Figure 20.3: Top: secondary eclipse time-series at various wavelengths and secondary
eclipse spectrum in F,/F, for WASP-18b as measured by JWST NIRISS/SOSS, TESS, and
Spitzer. Bottom: The thermal emission from WASP-18b alone, using a PHOENIX stellar
model to convert F,/F, to F,. Figure from Coulombe et al. (2023).

20.3 Emission spectra in practice: WASP-18b with JWST

Before we dive in to an activity with real JWST data, let’s briefly walk through an exam-
ple of the type of data you’ll be comparing thermal emission models to. Figures 20.3 - 20.5
show the secondary eclipse observations and spectrum, brightness temperature spectrum,
and retrieval results for WASP-18b as observed with JWST NIRISS/SOSS by Coulombe
et al. (2023). First, note that the spectrum in Figure 20.3 looks by eye nearly featureless.
This was already expected from previous HST and Spitzer observations, as WASP-18b is
an ultra-hot Jupiter with a dayside temperature of ~ 2900 K. At these high temperatures,
molecules begin to thermally dissociate, and thus there will be a reduced amount of infrared
opacity compared to cooler planets. When multiplying out a model stellar spectrum to iso-
late the planet thermal emission, some small features can be discerned, but it’s clear they
only correspond to thermal variations on the order of ~ 100 K in brightness temperature.

Figure 20.4 shows a spectrum of WASP-18b in brightness temperature rather than flux
(i.e., inverting for the blackbody temperature at each wavelength) in order to more clearly
display the small wavelength-dependent variations in the spectrum. Given the dominant ab-
sorbers overlaid to guide the eye, it is clear that water vapor spectral features are dominating
the spectral variation in the near-infrared. There is additionally an increase in the bright-
ness temperature going to shorter wavelengths due to a combination of optical absorbers,
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Figure 20.5: Retrieved temperature-pressure profiles (a) compared to condensation curves
and GCM results, retrieved metallicity (b), retrieved C/O ratio (c¢), and retrieved dilution
parameter (d) for WASP-18b. Figure from Coulombe et al. (2023).

The spectral features in Figure 20.4 correspond to an increase in temperature, implying
that they are emission rather than absorption features. The retrieved temperature-pressure
profile is shown in Figure 20.5, and compared to 3D GCM predictions, both of which indicate
that the atmosphere is thermally inverted at the photosphere. In addition, the retrievals

enable constraints on the atmospheric metallicity and C/O ratio, the former of which is
roughly Solar.

20.4 Emission spectra activity!

We'll now do an activity using a Jupyter notebook prepared by Dr. Anjali Piette that
will walk you through fitting model emission spectra to the WASP-18b JWST NIRISS/SOSS
dataset. Please get in small groups of 2-3 and open the Jupyter notebook on your laptop
and walk through the notebook. I'll walk around the room to make sure everyone is able to
make progress, and we’ll check in and compare our answers at the end.
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21 Exoplanet characterization: phase curves
Our agenda for Day 21 is the following:

1. Introduction to phase curves (15 minutes)

2. Overview of the state of phase curve observations (15 minutes)

3. Interpreting phase curves with analytic theory (25 minutes)

4. Activity: predicting day-night temperature contrasts (20 minutes)

Today’s reading is Sections 4.3-4.4 of the Zhang review article on exoplanet and brown dwarf
atmospheres. These sections will explain the current state of observations and theoretical
interpretation of orbital phase curves of exoplanets as well as rotational phase curves of
brown dwarfs. You may also want to read the Heng & Showman review on exoplanet phase
curves.

21.1 Phase curve fundamentals

Phase curves are measurements of the light from an object as a function of either orbital
phase or rotational phase. The light measured can include both thermal emitted light as well
as reflected light from a companion object (e.g., a star). Phase curves measured at present
for exoplanets are orbital phase curves, where the planet flux is a small modulation onto the
(nearly constant) stellar flux. Rotational phase curves, meanwhile, can be presently measured
for brown dwarfs and wide-separation giant planets. Phase curves critically provide a light
curve measurement of the object’s flux in the time-domain, which in turn can be translated
to make a (crude) map of the brightness of the planet as a function of longitude, latitude,
and/or pressure (where the latter can be inferred only if the measurement is spectroscopic).

21.1.1 Orbital phase curves: close-in exoplanets

Figure 21.1 shows an example phase curve taken by the Spitzer Space Telescope of the hot
Jupiter HD 189733b, which is a photometric observation centered at a wavelength of 3.6 um.
Labeled on the top half of this diagram (which shows the full y-scale) are the secondary
eclipse and transit where the planet is occulted by and occults the star, respectively. If you
look closely, you can see small changes in the total system flux — the star does not vary
significantly over the 2.2 day orbital period of the planet, so these variations are due to the
planet. The bottom zooms in to show the effect of the variation in thermal emission from
the planet HD 189733b on the phase curve. To first order, this variation is sinusoidal, and
in fact phase curves are often fit with a double sinusoid in the literature.

Phase curves are often characterized by two key features: their offset (i.e., time or phase
shift in the peak flux from the time of the center of secondary eclipse), and their amplitude
(i.e., relative difference between maximum and minimum flux). Phase curve offsets are
usually measured in degrees of orbital phase. The sign of the phase curve offset is such
that if the phase curve peaks before secondary eclipse, it is positive, and if it peaks after
secondary eclipse, the phase curve offset is negative. This convention is chosen such that the
phase curve offset matches with the sign of the brightness spot offset in longitude, assuming
that the planet is tidally locked to its host star, such that a positive phase curve offset
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Figure 21.1: Example orbital phase curve observation of the hot Jupiter HD 189733b with
the Spitzer Space Telescope at 3.6 pum. Figure adapted from Parmentier & Crossfield (2018).

corresponds to an eastward bright spot shift and a negative phase curve offset corresponds
to a westward bright spot shift. Phase curve amplitudes are usually measured as

Fmax_Fmin
4y = Lo banin). (21.1)

Fp,max

where F, ax and Fj, iy are the maximum and minimum flux, respectively. As a result, the
phase curve amplitude is Ap = 1 when the minimum flux goes to zero (e.g., in the case
of no day-night heat transport), and Ar = 0 when the planet has a uniform brightness
distribution.

A broad range of information about the planet’s thermal structure (and indirectly, the
atmospheric circulation) can be inferred from phase curve observations of exoplanets and
other complimentary observations. Figure 21.2 shows a summary of the types of measure-
ments that can be made at present for hot Jupiters. From population-level measurements of
dayside and nightside flux, one can then translate these fluxes at specific wavelengths into
brightness temperatures to constrain the day-to-night temperature contrast and how it de-
pends on planetary parameters, for instance equilibrium temperature (see also Figure 21.6).
From spectroscopic phase curve measurements (e.g., with HST or JWST), the changing
shapes of spectral features can provide constraints on the temperature profiles as a function
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Figure 21.2: Examples of the wealth of information that can be inferred from observations
of hot Jupiters, largely with phase curves. These include the day-night brightness tempera-
ture contrast, temperature profiles as a function of orbital phase, and hot spot offsets. With
high spectral resolution observations of transit, eclipse, or phase variations, Doppler shifts
due to winds can also be inferred. Figure adapted from Showman et al. (2020).

of orbital phase. Measurements of phase curve offsets can be translated to brightness tem-
perature offsets in longitude assuming tidal locking, which then allows for an inference to
be made on wind patterns that cause this phase curve offset. Finally, by observing phase
curves and transmission spectra in high spectral resolution (which requires instrumentation
on ground-based telescopes), the wind speeds and patterns in hot exoplanet atmospheres
can be inferred via Doppler shifts of spectral lines. Note that wind speeds and rotation are
degenerate with one another, so wind speeds can only be inferred under the assumption that
the planet is tidally locked (or if the rotation speed is otherwise known).

21.1.2 Contribution from reflected light

Though the majority of phase curves of exoplanets are measured in the infrared with
HST, Spitzer, and JWST, and thus largely probe thermal emission, phase curve observa-
tions in visible wavelengths with Kepler, TESS, and CHEOPS have a significant reflected
light component. As shown in Figure 21.3, numerical models of tidally locked hot Jupiters
predict that the emitted light component will lead to a phase shift that is opposite of that
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caused by reflected light. This is because the reflected light contribution is dominated by
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Figure 21.3: Simulated phase curve including both thermal emission and reflected light
contributions (left), and observed Kepler phase curve offsets (right). There appears to be
a transition in Kepler observations from reflected light setting the phase curve offset at low
temperature to thermal emission dominating at higher temperatures. Figure adapted from
Parmentier & Crossfield (2018).

scattering, which has a greater contribution from cloudy regions that are at lower tempera-
tures. Meanwhile, the thermal emitted light contribution is larger at clearer, hotter regions,
which generally occur on the eastern hemisphere of tidally locked planets. As a result, for
tidally locked hot Jupiters, the reflected light component is expected to cause westward
bright spot offsets while thermal emission will cause eastward bright spot offsets.

The relative contribution of reflected light vs. thermal emission varies with planetary
temperature, as hotter planets have a greater emitted component that will begin to dominate
over reflected light (especially in the visible due to the shift of the Planck function to shorter
wavelengths). Thus, theoretical predictions expect westward phase curve offsets in the visible
for cooler hot Jupiters (due to reflected light) that transition to eastward offsets for hotter
planets (due to thermal emission). This is exactly what has been observed in Kepler phase
curves, as shown in the right-hand panel of Figure 21.3.

21.1.3 Rotational phase curves: brown dwarfs, wide-separation giant planets

Light curve variability over rotational phase has been measured for many brown dwarfs,
both with ground- and space-based observations. Two examples of measured rotational
phase curve variability are shown in Figure 21.4. The left-hand panel shows a light curve
of SIMPO0136, displaying very short-timescale variability that is likely due to the inherent
patchiness of the atmosphere that changes due to rotation changing the observable hemi-
sphere with time. The patchiness in brown dwarf atmospheres is largely expected to be due
to a cloud coverage and the resulting effective temperature variations (Tan & Showman,
2021) — as a result, the changing light curve with time is likely due to changes in the cloud
cover and/or atmospheric circulation of the object. The right-hand panel shows inferred
surface maps of the closest brown dwarf to Earth, Luhman 16B, via Doppler imaging. This
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Figure 21.4: Example of a brown dwarf rotational light curve (left, 1.2 pm observations
of SIMP0136) and using rotational phase variations to infer surface patchiness on a brown
dwarf (right, Doppler imaging observations of Luhman 16B). Figure adapted from Showman
et al. (2020).

technique shows that the surface is patchy, with clear variations as a function of longitude
in the circulation of the object. TESS observations of Luhman 16B have similarly found
variability due to both rotation and atmospheric circulation, along with a long-term trend
in the brightness of the brown dwarf (Apai et al., 2021).

21.2 Phase curve theory for tidally locked exoplanets

In general, phase curves require detailed three-dimensional atmospheric circulation mod-
els, often termed General Circulation Models or GCMs, in order to interpret fully. We will
discuss and do an activity to study the detailed output of GCMs in the next class. In or-
der to build intuition, in this class we’ll derive a simple first-principles scaling theory for
the characteristic day-night temperature contrast and wind speeds of tidally locked gaseous
planets.

21.2.1 A simple coupled scaling theory for heat transport and winds

Let’s now derive simple analytic predictions for the day-night temperature contrast and
wind speeds of hot Jupiters, following a simplified version of the derivations in Perez-Becker
& Showman (2013); Komacek & Showman (2016); Zhang & Showman (2017); Zhang (2020).
To do so, we’ll start by scaling the equations of momentum conservation, hydrostatic equi-
librium, continuity equation, and energy conservation. We’ll then solve them in one limit,
geostrophic balance, which corresponds to when the pressure gradient and Coriolis terms
balance in the momentum equation. The full solutions are in Equations (13) and (14) of the
Zhang reading.

First, the conservation of momentum can be written

N VP e s0xv+F (21.2)
dt p
where the first term on the right is the pressure gradient force, the second gravity, the
third Coriolis force, and the last one additional dissipation (e.g., frictional drag). Let’s
scale the horizontal component of each term individually, noting that there is no horizontal
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contribution from gravity. First, the horizontal advection term in steady-state can be scaled

as

dv  0v U?
A (21.3)

where U and L are characteristic velocity and length scales, respectively. Next, using the
ideal gas law, the pressure gradient term can be written and scaled as

Vp _pRAT  RAT
p  pL L’

(21.4)

where AT is a characteristic planetary-scale (day-night) temperature contrast. Finally, the
Coriolis force can simply be scaled as

20 x v ~ QU. (21.5)

In geostrophic balance, the Coriolis force and pressure gradient balance, and thus our final
scaled momentum equation in geostrophy is

# _ou
21.6)
QUL (
AT = ==
R

This is one equation for two unknowns: AT and U. Thus, we need an additional constraint,
from energy conservation. This is just the first law of thermodynamics,

dT 1dp
g4+ ZXx 21.7
which we can alternately write as
dT
Sl (21.8)
dt — pc, ¢

where note that the vertical pressure velocity w = dp/dt. We can then make the ansatz that
the heating/cooling rate can be prescribed as a linear relaxation of the temperature back to
an equilibrium value (T,,) over the radiative timescale Ty,q,

q_ (T-Tw) (21.9)
Cp Trad ’ .
and further note that the material derivative of temperature can be written as
dlr orT oT
—_— = — -VT —_—. 21.10
dt ot v T op ( )

In the limit where we ignore vertical motions (a vast simplification from Komacek & Show-
man, 2016, but congruent with our simplifications of the momentum equation), and assume
a steady state, we can then write the thermodynamic energy equation as

Ty —T)

vovr = ¢ (21.11)

Trad
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Further assuming that To, — T ~ AT, — AT, where AT is the planetary-scale (day-night)
temperature contrast and AT, is the temperature contrast in radiative equilibrium, then
we can scale this equation to relate the wind speeds and day-night temperature contrast as

UAT (AT, — AT)

L Trad (21.12)
AT 1+ UTrad ! 1+ Trad - '
ATeq L Tdyn ’
In the equation above,
L
Tdyl’l ~ 57 (2113)

where L ~ a is the characteristic length scale of the circulation and U is the characteristic
wind speed. Combining with Equation (21.6), we can separately solve to find a quadratic
expression for AT
RTradATQ
QL?

R7yaq
QL2

+ AT — AT,y ~ 0. (21.14)

In the non-linear regime where AT, » 1, we can approximate

[QL2AT.
AT ~ 4 | ———=, 21.15
RTrad ( )

We can then plug this approximate expression for the day-night contrast into Equation (21.6)

to solve for the characteristic wind speed

RAT,,
Q’Trad ‘

For a typical hot Jupiter, R ~ 3600 J kg ™' K~!, AT,  ~ 1000 K, Q = 27/P,o; ~ 3.6x107° 571,

Tad ~ 10° 8, L ~ a ~ 1 Ry,,. Using these values, we find a typical hot Jupiter day-night
temperature contrast of AT ~ 700K and a typical wind speed of U ~ 1000 m s~*.

U~ (21.16)

21.2.2 Comparisons of this simple theory with observations

Figure 21.5 compares the predictions for the day-night temperature contrast (top) and
phase curve offset (bottom) derived from the full solution of this simple scaling theory (see
Equations 14 and 15 of the Zhang review article) with the state of the art of observations
prior to JWSTS. Note that the day-night temperature contrast is directly predicted from the
theory, and is here plotted as a fractional contrast

(Tday - Tnight)

A —
g Tday

(21.17)

Meanwhile, the phase curve offset can be estimated from the ratio of radiative to dynamical
timescales,

§ ~ tan~! (Tr“‘) : (21.18)

Tdyn

6At the time of writing there are only two published JWST phase curves, but a statistical sample of
JWST phase curve observations is likely forthcoming.
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where 7,4 was previously derived (see Equation 15.36 in the notes). Note that the ratio
Trad/Tdyn decreases with increasing equilibrium temperature, causing the predicted phase
offset to decrease with T¢,.
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Figure 21.5: Observed day-night brightness temperature difference (top) and phase curve
offset (bottom) as a function of equilibrium temperature (left) and orbital period (right),
compared with analytic theory (lines). Figure adapted from Zhang (2020).

There is clearly a wide range of scatter in the observed day-night temperature contrast
and phase offset (especially in the latter), and there are no statistically robust observa-
tional trends from Hubble and Spitzer observations. However, the theory roughly captures
the general behavior of the dependence of day-night temperature contrast on equilibrium
temperature and rotation period, and incorporating the uncertain strength of atmospheric
frictional drag as an effective model uncertainty allows for a better match (Komacek et al.,
2017). Meanwhile, the scatter in the observed phase offset is much larger than that pre-
dicted by analytic theory. Interestingly, the phase offset of the planetary thermal emission
has been measured to be negative with Spitzer phase curves (famously for CoRoT-2b, Dang
et al., 2018), which is not expected from standard theoretical models. The analytic theory
presented here assumes that the phase offset is set by a kinematic competition between ra-
diation and advection, but in reality it is set by winds Doppler-shifting a planetary-scale
wave pattern (Hammond & Pierrehumbert, 2018). Further work is needed to understand
the conditions in which this Doppler shifting could lead to westward phase curve offsets.

Note that the dashed line in the day-night temperature difference plot shows modifications
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to this scaling theory which include the thermodynamic effects of hydrogen dissociation
and recombination (Komacek & Tan, 2018; Tan & Komacek, 2019). Hydrogen begins to
thermally dissociate near the photospheres of hot Jupiters with T = 2200 K, and thus the
state of hydrogen transitions from (partially) atomic on the daysides to (largely) molecular
form on the nightsides on these “ultra-hot” Jupiters. Energy is required to be input to
break the hydrogen bond, and as a result dissociation leads to cooling — conversely, energy is
released when hydrogen recombines (analogous to a latent heat), and so recombination leads
to heating. This in turn reduces day-night contrasts compared to theoretical expectations
that do not include this effect (compare the dashed to the solid lines at T,y = 2000 K in
Figures 21.5 and 21.6).

One interesting trend from Spitzer phase curve observations is the apparent “flat” night-
sides of hot Jupiters (Keating et al., 2019; Beatty et al., 2019). Figure 21.6 shows the day-
side and nightside temperatures measured with Spitzer (see also Bell et al., 2021) compared
with predictions from the analytic scaling theory above including (solid) and not including
(dashed) the thermodynamic effect of hydrogen dissociation and recombination. The night-
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Figure 21.6: Observed dayside (red points) and nightside (blue points) brightness tem-
peratures compared with analytic theory (lines, solid lines include the effects of hydrogen

dissociation and recombination while dashed lines do not). Figure adapted from Zhang
(2020).

side temperatures of hot Jupiters appear to be roughly constant from 1000 K — 2500 K, even
though the dayside temperature roughly scales with the level of irradiation. This may be
explained with dynamics, as heat transport from day to night becomes less efficient with
increasing equilibrium temperature, increasing the fractional day-night temperature con-
trast as shown previously in Figure 21.5. However, an alternate explanation of these cold
nightsides is a cloud deck that keeps a constant temperature at the cloud top with varying
equilibrium temperature — implying that the cloud deck physically moves to higher altitudes
with increasing temperature. We’ll explore this possibility in more detail in our hands-on
activity in the next class, where we look at the outputs of GCMs that include clouds.
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21.2.3 Activity: predicting the day-night contrasts and wind speeds of various
exoplanets

We'll do this activity if time allows. Please split up into five groups — each group will
study one of the following five planets: KELT-9b, WASP-18b, WASP-43b, GJ 1214b, and
K2-18b. Using our derived scaling theory, predict the fractional day-to-night temperature
contrast AT /T,, and characteristic wind speeds U for your planet. To do so, use the NASA
Exoplanet Archive (https://exoplanetarchive.ipac.caltech.edu/) to find relevant data
(e.g., orbital period, semi-major axis, stellar effective temperature, stellar radius) that allows
you to calculate quantities needed to estimate the day-night temperature contrast and wind
speed. Make sure to explicitly calculate the full-redistribution equilibrium temperature.
Report your answers for Te, AT/T., U as plots on the board so we can determine how the
atmospheric circulation of tidally locked planets depends on the level of irradiation that they
receive.
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22 Exoplanet characterization: Atmospheric dynamics
Our agenda for Day 22 is the following:

1. Scale the equations of motion to derive basic force balances and the Rossby number
(30 minutes)

2. Activity: Analyze the predictions for atmospheric circulation of hot Jupiters from
state-of-the-art GCMs (remaining time)

Today’s reading is Section 6 of the Zhang review article on exoplanet and brown dwarf atmo-
spheres. This section will describe our current understanding of the atmospheric circulation
of exoplanets derived from a combination of General Circulation Models and theoretical first
principles.

22.1 Scale analysis of the momentum equation and basic force balances
22.1.1 The momentum equation in Cartesian coordinates

Recall that the full vector momentum equation is (Equation 21.2)

C;—;:—%—I-g—Qva—l—f, (22.1)
where the left-hand side represents advection and the terms on the right-hand side (in order)
are the pressure gradient, gravity, and Coriolis force, along with additional forces (e.g., drag
and resulting dissipation of momentum). In Cartesian coordinates, with x the east-west
direction and u the eastward wind, y the north-south direction and v the northward wind,
and z the vertical direction and w the vertical (upward) wind, we can write the components
of the full vector momentum equation as

d 1
o _Lop + 2Qusing — 2Quwcosp + F, (22.2)
dt pox
dv 10p .
i _,;a_y — 2Qusing + F,, (22.3)
dw 10p
B 20 ., 22.4
= 72 + 2Qucoso + F, ( )

where ¢ is latitude, which comes into the equations through the projection of the Coriolis
force onto each plane as Q, = 0, €2, = Qlcos¢, and 2, = Qsing.

22.1.2 Vertical force balance: hydrostatic equilibrium

Let’s now study the characteristic values of each term in the vertical momentum equation.
Re-writing it using the material derivative and dropping F,., we can express the vertical
momentum equation as

0 10
Tw +v-Vw = ——Tp — g + 2Qucose. (22.5)
ot poz
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We can write down a scaled version of this equation as

¥+¥~—p%—g+sw. (22.6)
For characteristic hot Jupiter atmospheric conditions, we can estimate T ~ 1000 K, H ~
RT/g ~ 3600 J kg™* K~'1000 K/25 m s> ~ 144 km, U ~ 1 km s™', L ~ a ~ 7 x 10* km,
g=GM/a> ~25ms2 Q~36x107°s1 7~10°s, Ap = pRAT with AT ~ 1000 K,
and W ~ UH/L ~ 2 m s™!. Plugging these in, we find that the approximate scaling for
each term (each in m s72) is

w  UW P
— et~ —— = Q
- + 7 Py g+ QU,

2x107°+3x107° ~ =25 — 25 + 0.036.

(22.7)

Thus, we can see that the dominant two terms are the pressure gradient and gravity — as
expected, hydrostatic balance holds on a large scale. Note that this also holds on a local
scale — if we conduct the same exercise as above, but study the local changes in the pressure
gradient and gravity due to the circulation, we still find that the pressure gradient and gravity
terms are orders of magnitude larger than other terms. As a result, to good approximation
we can consider the atmosphere to be in a state of vertical hydrostatic equilibrium.

22.1.3 Horizontal force balance: Rossby number, geostrophy

We can similarly write a full version of the y-component of the horizontal momentum
equation neglecting F,,
0 10
D hvovo= =L 20using. (22.8)
ot p oy
As above, scaling this expression and plugging in the same characteristic values, we now find
for the horizontal momentum balance
U U? RAT
—+—~—-QU
T 7 L ’
10724+14x107% ~ =51 x 1072 — 3.2 x 1072

(22.9)

This is clearly far tricker! Each of these terms are comparable to one another for hot Jupiters
(for Earth, the pressure gradient and Coriolis forces are in balance, with advection playing
a minimal role except near the equator). Assuming that the atmosphere is in steady-state
(0v/0t ~ 0), we have a three-way force balance between advection, pressure gradients, and
Coriolis forces that set the dynamics:

Lo 2Qusing. (22.10)

v - Vo
p oy

1%

Irradiated atmospheres will always have pressure and temperature gradients due to the
radiative forcing contrast between the more irradiated and less irradiated regions. Thus,
what determines the dynamical regime of an atmosphere (i.e., which term balances the
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pressure gradient) is the ratio of the advective term to the Coriolis term in the momentum
equation. This is the Rossby number,

advection U

Ro= """ _ — 22.11

©= Coriolis _ fL’ (22.11)

where f = 2Qsing is the Coriolis parameter. Depending on the Rossby number, an atmo-
sphere can be in one of two regimes

Ro < 1 geostrophic balance,

i ) (22.12)
Ro > 1 advection dominated.

On Earth, geostrophic balance applies in the mid-latitudes, so these regimes are often called
“extra-tropical” (Ro < 1) and “tropical” (Ro > 1) dynamics, respectively. Note that in
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Figure 22.1: Schematic plot showing the latitudinal extent of tropical and extratropical
regions on an Earth-sized planet as a function of rotation period. While Earth has both
tropical and extratropical dynamical regimes near the equator and mid-latitudes, Earth-
sized planets with similar wind speeds and rotation periods longer than 10 days would be
“all-tropics” worlds. Figure adapted from (Showman & Kaspi, 2013).

our estimate for a typical hot Jupiter, we expect Ro ~ 0.44. For Earth, Ro ~ 0.1 in the
mid-latitudes. Thus, geostrophic balance (“geostrophy”) often holds on the global scale for
planets (note that it does not for very slowly rotating planets, like Venus). The horizontal
momentum balance in geostrophy can be written as

_18p

-2
| gpy (22.13)

pox’

fux
fo~

Because geostrophic winds are at right angles to pressure gradients, geostrophy implies that
the circulation will follow isobars (contours of constant pressure) — that is, horizontal winds
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will flow parallel to isobars. Figure 22.2 shows a weather map near the 500 mbar pressure
level over North America. The wind barbs generally point parallel to the isobars, indicating

Figure 22.2: Isobars  near
500 mbars over North America,
along with wind barbs. Note that
the wind direction is generally
parallel to the isobars, a result
of geostrophic balance.  Figure
adapted  from  https://www.
weather.gov/jetstream/500mb.

that the atmosphere in Earth’s mid-latitudes is near geostrophic balance.
22.2 Python activity: Grid of hot Jupiter GCMs

Now that we’ve done some basic scaling, let’s get a sense for what is physically happening
in the atmospheres of hot Jupiters by looking at the results of numerical simulations. We’ll
specifically look at General Circulation Model simulations, which solve an equation set that
includes momentum conservation (force balance), mass conservation, local hydrostatic bal-
ance, thermal energy balance (first law of thermodynamics), and an equation of state (ideal
gas law). To recap, these are, in order,

dv Vp
—_ = —— — 20 22.14
o p +g xv+F, ( )
dp
— cv=20 22.15
dp
—_— = — 22.1
5, = P9 (22.16)
dTl 1dp
— = - 22.17
p = pRT. (22.18)

Specifically, GCMs solve the “primitive equations” of meteorology — a reduced form of the full
Navier-Stokes equations applied to atmospheres on a rotating sphere (which are somewhat
different than those above, but the differences are irrelevant for understanding the general
scaling of atmospheric dynamics with planetary properties).
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The .zip file on ELMS contains GCM output and a Python-based plotting tool to analyze
these (kindly provided by Alex Roth and Vivien Parmentier). These GCMs are similar to
those in Parmentier et al. (2021), and conducted with the SPARC/MITgcm (Showman et al.,
2009). However, this is an updated and novel grid that covers a much larger parameter
space over varying planetary equilibrium temperature, host star type, planetary gravity, and
planetary atmospheric metallicity, recently posted on arXiv as Roth et al. (2024)7.

First, we’ll start with the cloudless GCM models. Run the python script “uber-
grid_sliders_update.py” and you should see a pop-up window with sliders that allow you
to vary planetary parameters and see how it affects spectra, phase curves, and the temper-
ature map of the planet. Use this plotting tool to answer the following questions.

1.

Let’s start by studying how varying planetary properties affects near-infrared phase
curves measured with HST. To select HST for the phase curve, move the “bandpass”
slider under the phase curve to “5.” While keeping metallicity, stellar mass, and log(g)
at their default values, vary the equilibrium temperature from 1000 to 2400 K. How
does the varying equilibrium temperature affect the phase curve amplitude and offset?
To better understand these dependencies, look at how the temperature map changes
with temperature.

. We can use the radiative timescale to help interpret what’s going on. As a reminder,

this can be written as
b &

Trad = 46T
where p/g is the atmospheric mass, ¢, is the specific heat capacity, and T is the at-
mospheric temperature. We can re-write this expression using opacity rather than p/g
to think about the effect of atmospheric metallicity on the dynamics and phase curve.
Recall that the optical depth d7 = kpdl. Given that the mass per area is pz = p/g,
we can express T ~ kp/g. If we assume that the emission from the planet comes from
the 7 = 1 level, then we can write p/g = 1/k. Thus, we can re-write the radiative
timescale as

(22.19)

__ %
 AokT3’
where k is the opacity, which increases with increasing metallicity. Now keep T, =
1600 K but vary the metallicity from 0 to 1.5. How do the phase curve offset and phase
curve amplitude vary with metallicity?

Trad (2220)

Now keep T = 1600 K and log(M/H) = 0.0 but vary the gravity (logg) from 0.8 -
1.8. How do the phase curve offset and phase curve amplitude vary with gravity?

Using the expression for radiative timescale, come up with an explanation for what
causes the trends in phase curve offset and amplitude with metallicity, gravity and
equilibrium temperature.

For the case with T,, = 2400 K, look at the phase curve and temperature map with and
without TiO/VO (e.g., change the TiO/VO slider from 0 to 1). Specifically, compare

"Note that the activity was made with these GCMs before they were published, but the same basic results
hold in the final version of the GCM grid.
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how the phase curve amplitude changes between the bolometric phase curve (bandpass
12) and the HST/WFC3 phase curve (bandpass 5). Can you explain the difference
between the bandpasses?

Now let’s consider the effect of clouds in our GCM models. To do so, run the python
script “cloud_sliders_update.py” to open the plotting tool. These plots show results of GCMs
that contain MnS clouds of a range of prescribed particle sizes (0.1, 1, 10 pm) over varying
equilibrium temperature. Use this script to answer the following questions.

6. Keep T,y = 1400 K and reduce the particle size to 0.1 pm. Then, look at the phase
curve in bands 2, 4, and 6, which correspond to HST/STIS2, HST/WFC3, and Spitzer
Channel 2. For which of these bands is the phase curve dominated by reflected light?
Which of the bands are dominated by thermal emission?

7. From comparing the phase curve in band 2 (HST/STIS2) with the cloud and tempera-
ture maps at various pressures, estimate the range of pressure levels (in bars) that are
probed by the phase curve.

8. Now continuing to study the band 2 phase curve, vary the equilibrium temperature
from 1000 - 2000 K while keeping the particle size fixed at 0.1 pm. What is the range
of temperatures where the phase curve peaks after secondary eclipse? Use the cloud
map to understand what sets this temperature range.

9. Now choose band 6 (Spitzer Ch. 2, which is a wavelength of 4.5 pm), fix T, = 1400 K,
and vary the cloud particle size from 0.1 — 10 gm. Compare the cloudy and no clouds
phase curves to determine the effect of clouds on the phase curve. How does the effect
of clouds vary with particle size? Why does changing the particle size change the effect
of the clouds on the phase curve? Hint: this is related to Mie scattering.

If you've finished early, you can also take a look at the grid of models with a prescribed
nightside cloud deck (“NSonly_cloud_sliders_update.py”). These are more idealized, and
clouds are placed only on the nightside.

10. For band 5 (Spitzer Ch. 1) in the baseline case, determine how nightside clouds affect
the temperature map. Link this to the influence of clouds on the phase curve.

11. Use the temperature map to attempt to guess what pressures are probed in the phase
curve. The temperature map at which pressure level provides best fits to the cloudy
phase curve? What about the pressure level that best fits the clear phase curves? Are
the cloudy and cloud-free photospheres at similar or different pressures, and why?

12. How do nightside clouds affect the dayside spectra (phase 0)7 What about the nightside
spectra (phase 180)7?
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