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Towards Microwave-driven Entanglement

- Network analyser data (above) shows that >75% of 
input microwave power is coupled into the trap.

Trap Design
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Aim is to drive two-qubit entanglement using oscillating microwave, rather 
than optical, field gradients. This is achieved by trapping the ion in the 
near-field (<100µm) of a microwave conductor to obtain high enough 
gradients.
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Proposed (2008) and demonstrated (Nature 476 155, 2011) by Ospelkaus and 
coworkers at NIST.

- Measured field 
  gradients (right) agree 
  with simulations to 5%
- Sidebands observed 
- Heating rate is among 
  best measured in a 
  room temperature trap 
  (red dot on figure 
  below)
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Measured microwave B-field around ion
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43Ca+ Field-Insensitive Qubit

393nm
+

DśȦŘ Shelf

DřȦŘ

SŗȦŘ
�
ƽƸ
Ś

M
=

+
5

�řȦŘ

�
ƽƸ
Ś

M
=

+
5

ŞśŚ��
89.9%

850nm

850nm
+

Readout
Doppler Cooling at 146G

- S1/2-P1/2-D3/2 system has 64 states and no closed                                       
   transitions for cooling
- Optical Bloch equations used to simulate internal
   dynamics of the system
- Straightforward cooling solution found using 397nm   
   laser + 866nm repumper (figure a):
    - 397nm polarization chosen so that only a few
� ��VWDWHV�DUH�SRSXODWHG������UDWLR�RI�ı+�ʌ�
    - Needs only single sideband on 397nm cooling
   laser (from 3.2GHz EOM)
    - Single frequency 866nm repumping laser
    - P1/2 level population of up to ~0.15 simulated and    
  achieved (50000 s-1 fluorescence)

- The qubit is transferred to the D5/2 “shelf” level, using a 393nm laser as well as  
   one or more 850nm beams to repump population that decays to the D3/2 level
- Once shelved, unshelved population is detected by looking for fluorescence        
   using Doppler cooling lasers
- The shelving scheme is simulated to give fidelities of up to 99.985%
- Although two lasers are required, these can be standard diode lasers, which     
  are much less demanding than a 729nm (S1/2-D5/2) quadrupole laser

The ion is initialised in the “stretch” state 
4S1/2 (F=4,MF=+4) by several cycles of 
���ı+ optical pumping and microwave 
³UHFODLPLQJ´�ʌ�SXOVHV��EOXH���JLYLQJ�JRRG�
state preparation (>~99.99%) even with 
imperfect optical polarisation. Three 
PLFURZDYH�ʌ�SXOVHV��JUHHQ��DUH�WKHQ�
used to prepare the ‘clock’ qubit (red)

State preparation

- Magnetic field independent “clock” qubits allow long coherence times
- Intermediate-field clock qubits are preferable to zero-field clock qubits, as the Zeeman                                      
  shifts required to break state degeneracy induce first-order field dependances
- Until now, intermediate-field clock states have only been demonstrated in 9Be+ and 25Mg+ (NIST)
- 43Ca+ has the following advantages:
       - No UV lasers, which can charge the trap
       - Laser diodes, fibres and other optics readily available at all required wavelengths
       - Low-lying D-states allow high fidelity readout via electron shelving
- The main disadvantage is the lack of a closed cooling transition
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Single-qubit gate error at the 1ppm level
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Experimental results

Error from clock-qubitError from stretch-qubit
Total error

 Stretch-state preparation
Microwave transfer pulses
Shelving transfer to D5/2
Fluorescence detection

Source of error
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Advantages:
 - Microwave electronics more mature and scalable technology than lasers
 - No photon scattering as in laser-driven Raman gates
 - No requirement for sub-Doppler cooling

Disadvantages:
 - Microwave field not as well localised as laser field (crosstalk)
 - Careful nulling of microwave field at ion required to suppress AC     
         Zeeman shifts and unwanted single-qubit rotations
 - Fast gates (~10µs) will require small traps and high microwave current    
         densities

- Producing a strong gradient while nulling the field requires three wires
- For optimal coupling to the ion, microwaves should be combined onto
   the same electrodes as the RF trapping currents and DC control voltages
- Low-Q (~5) half-wave resonators allow impedance matching to 50�
   system and provide current build up
- Resonators are coupled to 50��V\VWHP�XVLQJ�TXDUWHU�ZDYH�FRXSOLQJ
   elements
- Design and simulation done using HFSS finite element microwave
   simulation software
- Trap constructed from gold electroplated onto a sapphire substrate for
   good thermal conductivity

Trap design showing microwave resonators and 
coupling elements

Below: Fields produced by microwave currents

Top right: HFSS simulations of trap, showing microwave 
currents in each electrode

Bottom right: Multiplexer used to combine microwaves, 
RF and DC

Results

- Cooling also possible using 850nm + 854nm   
   repumpers (figure b):
   - Involves D5/2 “shelf” level, so cannot be used  
  for qubit readout
   - Simpler system since no dark resonances
      between cooling and repumper lasers

We measured the single-qubit gate error by randomized benchmarking. After 
�����FRPSXWDWLRQDO�JDWHV��HDFK�FRPSRVHG�RI�D���ȝV�&OLIIRUG�ʌ���JDWH��
UDQGRPL]HG�E\�D�3DXOL�ʌ�JDWH���ZH�PHDVXUH�DQ�HUURU�RI�������LQGLFDWLQJ�DQ�
error-per-gate (EPG) at the part-per-million level.

- Microwaves are a more mature and simple technology than lasers. Driving 
  gates with microwaves offer many advantages in terms of stability,
  scalability,  noise and cost (see above).
- However, the longer wavelength of microwave radiation makes it hard to
  localise, giving large cross-talk between qubits.
- Our goal is to overcome this problem by designing and building a trap with
  integrated microwave electrodes to enable single-qubit addressing
- Addressing is accomplished by two techniques:
 - Each ion is addressed by four microwave electrodes, whose geometry
         produces a high-order multipole field, which dies off rapidly. Simulations
         suggest that this may reduce cross-talk to ~5%
 - The microwave electrodes for the second ion are used to produce a 
         cancellation field, nulling the effect of the first ion’s electrodes. 
         Simulations suggest that if these currents have phase and amiplitude
         stability of 0.1° and 0.1% then cross-talk may be reduced to 10-4 level
- The trap has been designed and simulated using Ansoft HFSS software

Mixed Species (40Ca/43Ca) Experiment

Raman Laser System

Goals

- Pair of injection-locked frequency-doubled amplified diode 
  lasers gives up to 40 mW at 397 nm in each Raman beam 
  at the ions
 - Photon scattering error for single qubit rotation predicted to 
  be < 10-4�DW�ȍRabi� ��ʌ�[������N+]
 - System can be switched between addressing 40Ca+ and 
    43Ca+ in 100ms by switching injection path
- Beat-note between Raman beams at ions sub-Hertz width
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- Two ion entanglement using a geometric phase gate
- High-fidelity laser gates
- Classical ‘AND’ gate by controlled relaxation (useful for practical
   error correction schemes)

Details
- Qubit stored in ground state manifold (T2 very large)
- Only one set of lasers needed as isotope shifts can be spanned using
   EOMs
- RF (40Ca+) and microwaves (43Ca+) used for single-qubit rotations
- Raman lasers used for spin-motion coupling and single-qubit rotations
- Isotope shift of ~ 1 GHz allows individual addressing of the different 
   isotopes and sympathetic cooling

The Ion Trap
- ‘Innsbruck style’ stainless steel ‘blade’ type
- Ion-electrode distance 0.5 mm
- Typical trap parameters:
 Trap RF drive: 30 MHz
 Axial secular frequency: 2 MHz
 Radial secular frequency: 4 MHz

Single-qubit addressing with microwaves


