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Gold on quartz fabrication at Oxford (left).
PrOtOtype Tra p - Allcock et. al. - New J. Phys. 12,053026 (2010)
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L , , _ _ Micromotion compensation in all directions is possible 01
6-wire’ design (below) with split centre dc electrode allows arbitrary by using an out of plane repumper and observing a 50 o
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Charging of trap (see graph B
- Monolithic silicon, glass and aluminium construction. toolf chareas Liran s no

Sandia Trap Testing - aicocket.al.- App. Phys.5 2011 i, Charging of trap (see o .

- Similar design to Oxford trap above but with slot for integrated optics. Lol fﬁgschﬁ?pg(ﬂ;r?t*){\/\ﬁuerﬁmimo —[g?
- Fabrication by Sandia National Laboratories (group of M. Blain) and funded by iIARPA. - : — '

- See Stick et. al. (arXiv:1008.0990) for fabrication info. exposed dielectrics) dueto

- Three traps tested at Oxford. ' I |_ ‘ I I , |

Early versions of trap
without on-package
capacitors (shown above)
had un-compensatable
micromotion issues. Future
versions will have ‘trench’

a-compensation (V/m)

wl Future traps will be gold capacitors under the
) TR w  coated (above) to reduce electrodes themselves.
charging.

O PR Ppees e [ Image of the cleaning spot on the trap (left) and

Laser Clea Ni ng - Allcock et. al. - New J. Phys. 13,123023 (2011) | N T S . A pescleaningy 0 — o057y | RESUlts (left) showing the ablation plume caused when the laser is first
|- o B (postecleaning): o= 0.52(7) ~50% reduction in heating applied (right).
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f S compared to uncleaned

- ‘Anomolous heating’ in ion traps thought to be caused by adsorbates on surface.
- Pulsed-laser cleaning of the trap significantly reduces heating rate (by ~50%).
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- First reported in situ reduction of heating rate by removal of source. £ | | D R area (B). Note also the V2 EEEET TR
g 10 N change in frequency —

ion position c b dependency of Sg (w-9). Eg
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4 cleaning bearn .  Diagram of laser cleaning geometry. : | R S R S
Al | Trap is the Sandia one described above. ¢ | T T N R R R e e il
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\ Laser is 355nm tripled Nd:YAG s 0 +*1+ o
= - 2-9ns pulses at (2)-.2HZ rep rate £ I *ﬁ\'?;} Results backed up by recent Art ion cleaning of trap at NIST (arXiv:1112.5419).
Au coating 50 07 60 - up to 350mJ/em2 in 300um dia. spot : | I - Two orders of magnitude reported by NIST
300 T ? SN S S i - Laser cleaning is experimentally much simpler though so further
10 Axial frequency (Hz) 10 experiments to optimise the techique should be performed.
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Ca* Field-Insensitive Qubit ;- Cooling at 146G Readout
: : : : ~ 6 - -
- Intermediate-field clock qubits preferable to zero-field £ - S4-P42-Dyy» System has 64 states and no closed transitions. ——
clock qubit as Zeeman shift lifts state degeneracies. = «; - Optical Bloch equations used to simulate. —=
- Until now Inter-m%dlaie-flel(zltClOEk states Only § ,L - Stra|ghtforward C00|ing solution found:
demonstated in *Be” and ®Mg" (NIST). ; - Polarizations chosen so only a few states populated
- CaN hS\? Ithe fo”?]\_NLnQ ad\r/\antagesth t 5 O - Needs only one sideband on cooling laser (from EOM) _
- NO asers wnich can charge u e lra > | | | | | | | | - Sj '
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- D-states for electron shelving (high readout fidelity) - o Ds2 Shelf
- However no closed cooling transition... s | _Ca Stewohqubitiransition (M=+dto M=+3) | | | | | | | Dsp
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Clock (green) ‘ , =T Pl T8 M - ina | Shelving scheme allows >99.9%
qubit prepare the ‘clock repumping laser. S .
M=-+4 qubit | readout fidelity without the need
' Measured ‘clock’ and ‘stretch’ qubit frequencies | | | | | | for a laser to address the
— using a single ©¥Ca" ion at 146G. B AR quadrupole transition.
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Towards Microwave-driven Entanglement Trap Design | comecon wacrwieaims | 173P 1€STING

Network analyser data shows that >75%
of input microwave power is coupled into
the trap.

Trap is gold on sapphire for
good thermal conductivity.

_:. 7 A/4 coupling section

A/2 resonator

Proposed (2008) and demonstrated (2011) by Ospelkaus and coworkers at NIST.

Gate driven by oscillating microwave, rather than optical, field gradient. lon is

trapped in the near-field <100um from a microwave conductor to obtain high The trap region is in the
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enough gradients ion centre of a half-wave H [
' 3 T resonator to increase 2 0
32% 2 zijjjjjjj?; currents. Quarter-wave g
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Advantages: Microwave field measured with ion is
- Microwave electronics more mature and scalable technology than lasers B RF+MW +DC within 15% of simulation
- No photon scattering as in laser-driven Raman gates .---. B bc control 0 '
- No requirement for sub-Doppler cooling S intions show fhat _____ 2xdcinputs I times of ~3us with <1mW microwave
Disadvantages: combining the microwave ~ L/ o | PO typical (see below).
- Microwave field not as well localised as laser field (crosstalk) and rf electrodes (above) e e 1
- Careful nulling of microwave field at ion required to suppress AC Zeeman shifts gives higher microwave ' -
- Fast gates (~10us) will require small traps and high microwave current densities gradients than alternative 0.8 1ty i '\‘
layouts for a given current. 06l T ’
Optimisation of the trap | 4l
microwave design was | |
carried out using HFSS, . . . | | 0.2 | |
finite element microwave Diplexer (right) is used to - & ¢ ; P
simulation software. connblne mlcrowa¥fes, rf T et 1 - N =T 5 10
Figures (left and right) voltages and dc ofisets. The B o Time t (1s)
show simulations of toroidal transformer steps-up 5 SO | dcinput _ _
current density in the trap. the trap rf supply. pwinput — 0 Vg bacitor Sideband measurements coming soon...

. . W T ] Background free detection can  *%[
Alternative “°Ca* Repumping SChemes -inkecta.-app.phys.82012 oo " also be achieved (ngh by 3
: ~ ¢ ] using an interference filter in the 3500f
Standard Doppler cooling re-pumping scheme uses 866nm laser (scheme ). Em"““;' f“—? | detection system to block £ 000
This allows the use of Dsj2 as a shelve for qubit readout. 2 8000 | g, gggﬂm H%gtr :é‘seﬂﬁgecwgly S 2500
If qubit readout isn’t the goal though better schemes exist. & b 4R s 1 _ : 3
d J J £ 600" 4P & 1 achieve 29000s™ fluorescence £
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850nm and 854nm repumpers (scheme Il) give higher count and cooling rates 40001 3 o }’I\gm Oar]cl)r/nl)?je?gtaettgartel?r;?i%%rof 1;0-
and allow easier interpretation of some experiments (eg Doppler recooling 2000[- 48 1 the éooling transition :
heating rate measurements) due to the lack of 2-photon coherent effects, such 2 \ ' 200y |
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