On unveiling buried nuclei with JWST: A technique for hunting the most obscured galaxy nuclei from local to high redshift
Abstract:
We analyze JWST NIRSpec+MIRI/MRS observations of the infrared (IR) polycyclic aromatic hydrocarbon (PAH) features in the central regions (a at 6 μm; a 440 pc depending on the source) of local luminous IR galaxies. In this work, we examine the effect of nuclear obscuration on the PAH features of deeply obscured nuclei, predominantly found in local luminous IR galaxies, and we compare these nuclei with astar-forming regions. We extend previous work to include shorter wavelength PAH ratios now available with the NIRSpec+MIRI/MRS spectral range. We introduce a new diagnostic diagram for selecting deeply obscured nuclei based on the 3.3 and 6.2 μm PAH features and/or mid-IR continuum ratios at a3 and 5 μm. We find that the PAH equivalent width ratio of the brightest PAH features at shorter wavelengths (at 3.3 and 6.2 μm) is impacted by nuclear obscuration. Although the sample of luminous IR galaxies used in this analysis is relatively small, we find that sources exhibiting a high silicate absorption feature cluster tightly in a specific region of the diagram, whereas star-forming regions experiencing lower extinction levels occupy a different area in the diagram. This demonstrates the potential of this technique to identify buried nuclei. To leverage the excellent sensitivity of the MIRI imager on board JWST, we extend our method of identifying deeply obscured nuclei at higher redshifts using a selection of MIRI filters. Specifically, the combination of various MIRI JWST filters enables the identification of buried sources beyond the local Universe and up to za 3, where other commonly used obscuration tracers such as the 9.7 μm silicate band, are out of the spectral range of MRS. Our results pave the way for identifying distant deeply obscured nuclei with JWST.Inferring the ionizing photon contributions of high-redshift galaxies to reionization with JWST NIRCam photometry
Impact of star formation models on the growth of simulated galaxies at high redshifts
Evaluating the variance of individual halo properties in constrained cosmological simulations
Dwarf galaxies as a probe of a primordially magnetized Universe
Abstract:
Aims: The true nature of primordial magnetic fields (PMFs) and their role in the formation of galaxies still remains elusive. To shed light on these unknowns, we investigate their impact by varying two sets of properties: (i) accounting for the effect of PMFs on the initial matter power spectrum, and (ii) accounting for their magneto-hydrodynamical effects on the formation of galaxies. By comparing both we can determine the dominant agent in shaping galaxy evolution.
Methods: We use the magneto-hydrodynamics code RAMSES, to generate multiple new zoom-in simulations for eight different host halos of dwarf galaxies across a wide luminosity range of 103 − 106 L⊙. These halos are selected from a ΛCDM cosmological box, tracking their evolution down to redshift z = 0. We explore a variety of primordial magnetic field (comoving) strengths Bλ ranging from 0.05 to 0.50 nG.
Results: We find magnetic fields in the interstellar medium not only modify star formation in dwarf spheroidal galaxies but also completely prevent the formation of stars in less compact ultra-faints with halo mass and stellar mass below ∼ 2.5 · 109 and 3 · 106 M⊙, respectively. At high redshifts, the impact of PMFs on host halos of dwarf galaxies through the modification of the matter power spectrum is more dominant than the influence of magneto-hydrodynamics in shaping their gaseous structure. Through the amplification of small perturbations ranging in mass from 107 to 109 M⊙ in the ΛCDM+PMFs matter power spectrum, primordial fields expedite the formation of the first dark matter halos, leading to an earlier onset and a higher star formation rate at redshifts z > 12. We investigate the evolution of various energy components and demonstrate that magnetic fields with an initial strength of Bλ ≥ 0.05 nG exhibit a strong growth of magnetic energy, accompanied by a saturation phase, that starts quickly after the growth phase. These trends persist consistently, regardless of the initial conditions, whether it is the classical ΛCDM or modified by PMFs. Lastly, we investigate the impact of PMFs on the present-time observable properties of dwarf galaxies, namely, the half light radius, V-band luminosity, mean metallicity and velocity dispersion profile. We find that PMFs with moderate strengths of Bλ ≤ 0.10 nG show great agreement with the scaling relations of the observed Local group dwarfs. However, stronger fields lead to large sizes and high velocity dispersion.