Dark matter attenuation effects: sensitivity ceilings for spin-dependent and spin-independent interactions

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:4 (2025) 017

Authors:

N Darvishi, J Smirnov, S Autti, L Bloomfield, A Casey, N Eng, P Franchini, Rp Haley, Pj Heikkinen, A Jennings, A Kemp, E Leason, J March-Russell, A Mayer, Jocelyn Monroe, D Münstermann, Mt Noble, Jr Prance, X Rojas, T Salmon, J Saunders, R Smith, Md Thompson, A Thomson, A Ting, V Tsepelin, Sm West, L Whitehead, De Zmeev

Abstract:

Direct detection experiments aimed at uncovering the elusive nature of dark matter (DM) have made significant progress in probing ever lower cross-sections for DM-nucleon interactions. At the same time, an upper limit in the cross-section sensitivity region is present due to DM scattering in the Earth and atmosphere and as a result never reaching the detector. We investigate the impact of this effect for both spin-dependent and spin-independent interactions. In contrast to previous studies that assume a straight line path for DM scattering we employ a semi-analytic diffusion model that takes into account the impact of potentially large angle deviations prevalent for light DM masses. We find that for sufficiently low energy thresholds, this difference in modelling impacts the DM interaction cross-section sensitivity. This study evaluates the impact in the context of the QUEST-DMC experiment, which utilises surface-based detectors with superfluid Helium-3 bolometers to search for sub-GeV DM exploiting low energy threshold. At masses below 1 GeV/c^2 the deviation between the two frameworks becomes pronounced. The ceiling sensitivity limit for QUEST-DMC on spin-dependent DM-neutron cross-sections is ∼ 3 × 10^-24cm^2 using the diffusive framework and approximately doubles with the straight-line path DM scattering. Similarly, for spin-independent DM-nucleon cross-sections, the ceiling limit is ∼ 7.5 × 10^-27cm^2 under the diffusive framework and also increases about a factor of two with the straight-line path approximation, within the mass range of 0.025–5 GeV/c^2.

Measurement of high-mass $t\bar{t}\ell^{+}\ell^{-}$ production and lepton flavour universality-inspired effective field theory interpretations at $\sqrt{s}=13$ TeV with the ATLAS detector

ArXiv 2504.05919 (2025)

Measurement of substructure-dependent suppression of large-radius jets with charged particles in Pb+Pb collisions with ATLAS

ArXiv 2504.04805 (2025)

Characterization of nuclear breakup as a function of hard-scattering kinematics using dijets measured by ATLAS in $p$+Pb collisions

ArXiv 2504.02638 (2025)

Measuring the ATLAS ITk pixel detector material via multiple scattering of positrons at the CERN PS

The European Physical Journal C SpringerOpen 85:4 (2025) 381

Authors:

Simon Florian Koch, Brian Moser, Antonín Lindner, Valerio Dao, Ignacio Asensi, Daniela Bortoletto, Marianne Brekkum, Florian Dachs, Hans Ludwig Joos, Milou van Rijnbach, Abhishek Sharma, Ismet Siral, Carlos Solans, Yingjie Wei

Abstract:

The ITk is a new silicon tracker for the ATLAS experiment designed to increase detector resolution, readout capacity, and radiation hardness, in preparation for the larger number of simultaneous proton–proton interactions at the High Luminosity LHC. This paper presents the first direct measurement of the material budget of an ATLAS ITk pixel module, performed at a testbeam at the CERN Proton Synchrotron via the multiple scattering of low energy positrons within the module volume. Using a four plane telescope of thin monolithic pixel detectors from the MALTA Collaboration, scattering datasets were recorded at a beam energy of 1.2GeV. Kink angle distributions were extracted from tracks derived with and without information from the ITk pixel module, and were fit to extract the RMS scattering angle, which was converted to a fractional radiation length x/X0. The average x/X0 across the module was measured as [0.89±0.01(resolution)±0.01(subtraction)±0.08(beam momentum band)]%, which agrees within uncertainties with an estimate of 0.88% derived from material component expectations.