Inhibiting the Appearance of Green Emission in Mixed Lead Halide Perovskite Nanocrystals for Pure Red Emission.
Nano letters American Chemical Society (ACS) 24:39 (2024) 12045-12053
Abstract:
Mixed halide perovskites exhibit promising optoelectronic properties for next-generation light-emitting diodes due to their tunable emission wavelength that covers the entire visible light spectrum. However, these materials suffer from severe phase segregation under continuous illumination, making long-term stability for pure red emission a significant challenge. In this study, we present a comprehensive analysis of the role of halide oxidation in unbalanced ion migration (I/Br) within CsPbI<sub>2</sub>Br nanocrystals and thin films. We also introduce a new approach using cyclic olefin copolymer (COC) to encapsulate CsPbI<sub>2</sub>Br perovskite nanocrystals (PNCs), effectively suppressing ion migration by increasing the corresponding activation energy. Compared with that of unencapsulated samples, we observe a substantial reduction in phase separation under intense illumination in PNCs with a COC coating. Our findings show that COC enhances phase stability by passivating uncoordinated surface defects (Pb<sup>2+</sup> and I<sup>-</sup>), increasing the formation energy of halide vacancies, improving the charge carrier lifetime, and reducing the nonradiative recombination density.Temporal witnesses of non-classicality in a macroscopic biological system
Scientific Reports Nature Research 14:1 (2024) 20094
Abstract:
Exciton transfer along a bio-polymer is essential for many biological processes, for instance, light harvesting in photosynthetic biosystems. Here we apply a new witness of non-classicality to this phenomenon, to conclude that, if an exciton can mediate the coherent quantum evolution of a photon, then the exciton is non-classical. We then propose a general qubit model for the quantum transfer of an exciton along a bio-polymer chain, also discussing the effects of environmental decoherence. The generality of our results makes them ideal candidates to design new tests of quantum features in complex bio-molecules.Purification and correction of quantum channels by commutation-derived quantum filters
(2024)
Boosting biomolecular switch efficiency with quantum coherence
Physical Review A American Physical Society (APS) 110:1 (2024) 012411