Star-gas misalignment in galaxies: I. The properties of galaxies from the Horizon-AGN simulation and comparisons to SAMI
Abstract:
Recent integral field spectroscopy observations have found that about 11\% of galaxies show star-gas misalignment. The misalignment possibly results from external effects such as gas accretion, interaction with other objects, and other environmental effects, hence providing clues to these effects. We explore the properties of misaligned galaxies using Horizon-AGN, a large-volume cosmological simulation, and compare the result with the result of the Sydney-AAO Multi-object integral field spectrograph (SAMI) Galaxy Survey. Horizon-AGN can match the overall misalignment fraction and reproduces the distribution of misalignment angles found by observations surprisingly closely. The misalignment fraction is found to be highly correlated with galaxy morphology both in observations and in the simulation: early-type galaxies are substantially more frequently misaligned than late-type galaxies. The gas fraction is another important factor associated with misalignment in the sense that misalignment increases with decreasing gas fraction. However, there is a significant discrepancy between the SAMI and Horizon-AGN data in the misalignment fraction for the galaxies in dense (cluster) environments. We discuss possible origins of misalignment and disagreement.Stochastic transport of high-energy particles through a turbulent plasma
Abstract:
The interplay between charged particles and turbulent magnetic fields is crucial to understanding how cosmic rays propagate through space. A key parameter which controls this interplay is the ratio of the particle gyroradius to the correlation length of the magnetic turbulence. For the vast majority of cosmic rays detected at the Earth, this parameter is small, and the particles are well confined by the Galactic magnetic field. But for cosmic rays more energetic than about 30 EeV, this parameter is large. These highest energy particles are not confined to the Milky Way and are presumed to be extragalactic in origin. Identifying their sources requires understanding how they are deflected by the intergalactic magnetic field, which appears to be weak, turbulent with an unknown correlation length, and possibly spatially intermittent. This is particularly relevant given the recent detection by the Pierre Auger Observatory of a significant dipole anisotropy in the arrival directions of cosmic rays of energy above 8 EeV. Here we report measurements of energetic-particle propagation through a random magnetic field in a laser-produced plasma. We characterize the diffusive transport of these particles and recover experimentally pitch-angle scattering measurements and extrapolate to find their mean free path and the associated diffusion coefficient, which show scaling-relations consistent with theoretical studies. This experiment validates these theoretical tools for analyzing the propagation of ultra-high energy cosmic rays through the intergalactic medium.Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). VI. Crowdsourced lens finding with Space Warps
Abstract:
Strong lenses are extremely useful probes of the distribution of matter on galaxy and cluster scales at cosmological distances, but are rare and difficult to find. The number of currently known lenses is on the order of 1,000. We wish to use crowdsourcing to carry out a lens search targeting massive galaxies selected from over 442 square degrees of photometric data from the Hyper Suprime-Cam (HSC) survey. We selected a sample of $\sim300,000$ galaxies with photometric redshifts in the range $0.2 < z_{phot} < 1.2$ and photometrically inferred stellar masses $\log{M_*} > 11.2$. We crowdsourced lens finding on this sample of galaxies on the Zooniverse platform, as part of the Space Warps project. The sample was complemented by a large set of simulated lenses and visually selected non-lenses, for training purposes. Nearly 6,000 citizen volunteers participated in the experiment. In parallel, we used YattaLens, an automated lens finding algorithm, to look for lenses in the same sample of galaxies. Based on a statistical analysis of classification data from the volunteers, we selected a sample of the most promising $\sim1,500$ candidates which we then visually inspected: half of them turned out to be possible (grade C) lenses or better. Including lenses found by YattaLens or serendipitously noticed in the discussion section of the Space Warps website, we were able to find 14 definite lenses, 129 probable lenses and 581 possible lenses. YattaLens found half the number of lenses discovered via crowdsourcing. Crowdsourcing is able to produce samples of lens candidates with high completeness and purity, compared to currently available automated algorithms. A hybrid approach, in which the visual inspection of samples of lens candidates pre-selected by discovery algorithms and/or coupled to machine learning is crowdsourced, will be a viable option for lens finding in the 2020s.Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). VI. Crowdsourced lens finding with Space Warps
Abstract:
Strong lenses are extremely useful probes of the distribution of matter on galaxy and cluster scales at cosmological distances, but are rare and difficult to find. The number of currently known lenses is on the order of 1,000. We wish to use crowdsourcing to carry out a lens search targeting massive galaxies selected from over 442 square degrees of photometric data from the Hyper Suprime-Cam (HSC) survey. We selected a sample of $\sim300,000$ galaxies with photometric redshifts in the range $0.2 < z_{phot} < 1.2$ and photometrically inferred stellar masses $\log{M_*} > 11.2$. We crowdsourced lens finding on this sample of galaxies on the Zooniverse platform, as part of the Space Warps project. The sample was complemented by a large set of simulated lenses and visually selected non-lenses, for training purposes. Nearly 6,000 citizen volunteers participated in the experiment. In parallel, we used YattaLens, an automated lens finding algorithm, to look for lenses in the same sample of galaxies. Based on a statistical analysis of classification data from the volunteers, we selected a sample of the most promising $\sim1,500$ candidates which we then visually inspected: half of them turned out to be possible (grade C) lenses or better. Including lenses found by YattaLens or serendipitously noticed in the discussion section of the Space Warps website, we were able to find 14 definite lenses, 129 probable lenses and 581 possible lenses. YattaLens found half the number of lenses discovered via crowdsourcing. Crowdsourcing is able to produce samples of lens candidates with high completeness and purity, compared to currently available automated algorithms. A hybrid approach, in which the visual inspection of samples of lens candidates pre-selected by discovery algorithms and/or coupled to machine learning is crowdsourced, will be a viable option for lens finding in the 2020s.The AGN fuelling/feedback cycle in nearby radio galaxies II. Kinematics of the molecular gas
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP)