Comparing the DES-SN5YR and Pantheon+ SN cosmology analyses: Investigation based on ‘Evolving Dark Energy or Supernovae systematics’?
Monthly Notices of the Royal Astronomical Society (2025) staf943
Abstract:
Recent cosmological analyses measuring distances of Type Ia Supernovae (SNe Ia) and Baryon Acoustic Oscillations (BAO) have all given similar hints at time-evolving dark energy. To examine whether underestimated SN Ia systematics might be driving these results, Efstathiou (2024) compared overlapping SN events between Pantheon+ and DES-SN5YR (20 % SNe are in common), and reported evidence for a ∼0.04 mag offset between the low and high-redshift distance measurements of this subsample of events. If this offset is arbitrarily subtracted from the entire DES-SN5YR sample, the preference for evolving dark energy is reduced. In this paper, we show that this offset is mostly due to different corrections for Malmquist bias between the two samples; therefore, an object-to-object comparison can be misleading. Malmquist bias corrections differ between the two analyses for several reasons. First, DES-SN5YR used an improved model of SN Ia luminosity scatter compared to Pantheon+ but the associated scatter-model uncertainties are included in the error budget. Second, improvements in host mass estimates in DES-SN5YR also affected SN standardized magnitudes and their bias corrections. Third, and most importantly, the selection functions of the two compilations are significantly different, hence the inferred Malmquist bias corrections. Even if the original scatter model and host properties from Pantheon+ are used instead, the evidence for evolving dark energy from CMB, DESI BAO Year 1 and DES-SN5YR is only reduced from 3.9σ to 3.3σ, consistent with the error budget. Finally, in this investigation, we identify an underestimated systematic uncertainty related to host galaxy property uncertainties, which could increase the final DES-SN5YR error budget by 3 %. In conclusion, we confirm the validity of the published DES-SN5YR results.Joint Radiative and Kinematic Modelling of X-ray Binary Ejecta: Energy Estimate and Reverse Shock Detection
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1085
Abstract:
Abstract Black hole X-ray binaries in outburst launch discrete, large-scale jet ejections which can propagate to parsec scales. The kinematics of these ejecta appear to be well described by relativistic blast wave models original devised for gamma-ray burst afterglows. In previous kinematic-only modelling, a crucial degeneracy prevented the initial ejecta energy and the interstellar medium density from being accurately determined. In this work, we present the first joint Bayesian modelling of the radiation and kinematics of a large-scale jet ejection from the X-ray binary MAXI J1535-571. We demonstrate that a reverse shock powers the bright, early ejecta emission. The joint model breaks the energetic degeneracy, and we find the ejecta has an initial energy of E0 ∼ 3 × 1043 erg, and propagates into a low density interstellar medium of nism ∼ 4 × 10−5 cm−3. The ejecta is consistent with being launched perpendicular to the disc and could be powered by an efficient conversion of available accretion power alone. This work lays the foundation for future parameter estimation studies using all available data of X-ray binary jet ejecta.MIGHTEE-HI: The radial acceleration relation with resolved stellar mass measurements
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1079
Abstract:
Abstract The radial acceleration relation (RAR) is a fundamental relation linking baryonic and dark matter in galaxies by relating the observed acceleration derived from dynamics to the one estimated from the baryonic mass. This relation exhibits small scatter, thus providing key constraints for models of galaxy formation and evolution—allowing us to map the distribution of dark matter in galaxies—as well as models of modified dynamics. However, it has only been extensively studied in the very local Universe with largely heterogeneous samples. We present a new measurement of the RAR, utilising a homogeneous sample of 19 H i-selected galaxies out to z = 0.08. We introduce a novel approach of measuring resolved stellar masses using spectral energy distribution (SED) fitting across 10 photometric bands to determine the resolved mass-to-light ratio, which we show is essential for measuring the acceleration due to baryons in the low-acceleration regime. Our results reveal a tight RAR with a low-acceleration power-law slope of ∼0.5, consistent with previous studies. Adopting a spatially varying mass-to-light ratio yields the tightest RAR with an intrinsic scatter of only 0.045 ± 0.022 dex, highlighting the importance of resolved stellar mass measurements in accurately characterising the gravitational contribution of the baryons in low-mass, gas-rich galaxies. We also find the first tentative evidence for redshift evolution in the acceleration scale, but more data will be required to confirm this. Adopting a more general MOND interpolating function, we find that our results ameliorate the tension between previous RAR analyses, the Solar System quadrupole and wide-binary test.Galaxy Zoo CEERS: Bar Fractions Up to z ∼ 4.0
The Astrophysical Journal American Astronomical Society 987:1 (2025) 74
Abstract:
We study the evolution of the bar fraction in disk galaxies between 0.5 < z < 4.0 using multiband colored images from JWST Cosmic Evolution Early Release Science Survey (CEERS). These images were classified by citizen scientists in a new phase of the Galaxy Zoo (GZ) project called GZ CEERS. Citizen scientists were asked whether a strong or weak bar was visible in the host galaxy. After considering multiple corrections for observational biases, we find that the bar fraction decreases with redshift in our volume-limited sample (n = 398); from 25−4+6 % at 0.5 < z < 1.0 to 3−1+6 % at 3.0 < z < 4.0. However, we argue it is appropriate to interpret these fractions as lower limits. Disentangling real changes in the bar fraction from detection biases remains challenging. Nevertheless, we find a significant number of bars up to z = 2.5. This implies that disks are dynamically cool or baryon dominated, enabling them to host bars. This also suggests that bar-driven secular evolution likely plays an important role at higher redshifts. When we distinguish between strong and weak bars, we find that the weak bar fraction decreases with increasing redshift. In contrast, the strong bar fraction is constant between 0.5 < z < 2.5. This implies that the strong bars found in this work are robust long-lived structures, unless the rate of bar destruction is similar to the rate of bar formation. Finally, our results are consistent with disk instabilities being the dominant mode of bar formation at lower redshifts, while bar formation through interactions and mergers is more common at higher redshifts.HI Intensity Mapping with the MIGHTEE Survey: First Results of the H i Power Spectrum
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf975