Electron trapping and reinjection in prepulse-shaped gas targets for laser-plasma accelerators

Physical Review Accelerators and Beams American Physical Society (APS) 23:11 (2020) 111301

Authors:

Rhh Scott, C Thornton, N Bourgeois, J Cowley, Wolf Rittershofer, Tobias Kleinwächter, Jens Osterhoff, Dr Symes, C Hooker, Sm Hooker

Self-waveguiding of relativistic laser pulses in neutral gas channels

Physical Review Research American Physical Society 2:4 (2020) 43173

Authors:

L Feder, B Miao, Je Shrock, A Goffin, Hm Milchberg

Abstract:

We demonstrate that an ultrashort high intensity laser pulse can propagate for hundreds of Rayleigh ranges in a prepared neutral hydrogen channel by generating its own plasma waveguide as it propagates; the front of the pulse generates a waveguide that confines the rest of the pulse. A wide range of suitable initial index structures and gas densities will support this “self-waveguiding” process; the necessary feature is that the gas density on axis is a minimum. Here, we demonstrate self-waveguiding of pulses of at least 1.5 × 1017 W/cm2 (normalized vector potential a0 ∼ 0.3) over 10 cm, or ∼100 Rayleigh ranges, limited only by our laser energy and length of our gas jet. We predict and observe characteristic oscillations corresponding to mode-beating during self-waveguiding. The self-waveguiding pulse leaves in its wake a fully ionized low-density plasma waveguide which can guide another pulse injected immediately following; we demonstrate optical guiding of such a follow-on probe pulse. The method is well suited to laser wakefield acceleration and other applications requiring a long laser-matter interaction length.

Meter-scale conditioned hydrodynamic optical-field-ionized plasma channels

Physical Review E American Physical Society 102:5 (2020) 53201

Authors:

A Picksley, A Alejo, Rj Shalloo, C Arran, A von Boetticher, L Corner, Ja Holloway, J Jonnerby, O Jakobsson, C Thornton, R Walczak, Sm Hooker

Abstract:

We demonstrate through experiments and numerical simulations that low-density, low-loss, meter-scale plasma channels can be generated by employing a conditioning laser pulse to ionize the neutral gas collar surrounding a hydrodynamic optical-field-ionized (HOFI) plasma channel. We use particle-in-cell simulations to show that the leading edge of the conditioning pulse ionizes the neutral gas collar to generate a deep, low-loss plasma channel which guides the bulk of the conditioning pulse itself as well as any subsequently injected pulses. In proof-of-principle experiments, we generate conditioned HOFI (CHOFI) waveguides with axial electron densities of ne0≈1×10^17cm−3 and a matched spot size of 26μm. The power attenuation length of these CHOFI channels was calculated to be Latt=(21±3)m, more than two orders of magnitude longer than achieved by HOFI channels. Hydrodynamic and particle-in-cell simulations demonstrate that meter-scale CHOFI waveguides with attenuation lengths exceeding 1 m could be generated with a total laser pulse energy of only 1.2 J per meter of channel. The properties of CHOFI channels are ideally suited to many applications in high-intensity light-matter interactions, including multi-GeV plasma accelerator stages operating at high pulse repetition rates.

Meter-Scale, Conditioned Hydrodynamic Optical-Field-Ionized Plasma Channels

(2020)

Authors:

A Picksley, A Alejo, RJ Shalloo, C Arran, A von Boetticher, L Corner, JA Holloway, J Jonnerby, O Jakobsson, C Thornton, R Walczak, SM Hooker

Guiding of high-intensity laser pulses in 100mm-long hydrodynamic optical-field-ionized plasma channels

Physical Review Accelerators and Beams American Physical Society 23:8 (2020) 081303

Authors:

A Picksley, A Alejo, J Cowley, N Bourgeois, L Corner, L Feder, J Holloway, H Jones, J Jonnerby, Hm Milchberg, Lr Reid, Aj Ross, R Walczak, Sm Hooker

Abstract:

Hydrodynamic optically-field-ionized (HOFI) plasma channels up to 100mm long are investigated. Optical guiding is demonstrated of laser pulses with a peak input intensity of $6\times10^{17}$ W cm$^{-2}$ through 100mm long plasma channels with on-axis densities measured interferometrically to be as low as $n_{e0} =(1.0\pm0.3)\times10^{17}$cm$^{-3}$. Guiding is also observed at lower axial densities, which are inferred from magneto-hydrodynamic simulations to be approximately $7\times10^{16}$cm$^{-3}$. Measurements of the power attenuation lengths of the channels are shown to be in good agreement with those calculated from the measured transverse electron density profiles. To our knowledge, the plasma channels investigated in this work are the longest, and have the lowest on-axis density, of any free-standing waveguide demonstrated to guide laser pulses with intensities above $>10^{17}$ W cm$^{-2}$.