Vertically resolved magma ocean–protoatmosphere evolution: H2, H2O, CO2, CH4, CO, O2, and N2 as primary absorbers

Journal of Geophysical Research: Planets American Geophysical Union (AGU) (2021)

Authors:

Tim Lichtenberg, Dan J Bower, Mark Hammond, Ryan Boukrouche, Patrick Sanan, Shang‐Min Tsai, Raymond T Pierrehumbert

Tidally induced stellar oscillations: converting modelled oscillations excited by hot Jupiters into observables

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2021)

Authors:

Andrew Bunting, CAROLINE TERQUEM

Bifurcation of planetary building blocks during Solar System formation.

Science (New York, N.Y.) 371:6527 (2021) 365-370

Authors:

Tim Lichtenberg, Joanna Drazkowska, Maria Schönbächler, Gregor J Golabek, Thomas O Hands

Abstract:

Geochemical and astronomical evidence demonstrates that planet formation occurred in two spatially and temporally separated reservoirs. The origin of this dichotomy is unknown. We use numerical models to investigate how the evolution of the solar protoplanetary disk influenced the timing of protoplanet formation and their internal evolution. Migration of the water snow line can generate two distinct bursts of planetesimal formation that sample different source regions. These reservoirs evolve in divergent geophysical modes and develop distinct volatile contents, consistent with constraints from accretion chronology, thermochemistry, and the mass divergence of inner and outer Solar System. Our simulations suggest that the compositional fractionation and isotopic dichotomy of the Solar System was initiated by the interplay between disk dynamics, heterogeneous accretion, and internal evolution of forming protoplanets.

Tidally induced stellar oscillations: converting modelled oscillations excited by hot Jupiters into observables

(2020)

Authors:

Andrew Bunting, Caroline Terquem

Prospects for characterizing the haziest sub-Neptune exoplanets with high-resolution spectroscopy

Astronomical Journal IOP Publishing 160:5 (2020) 160-198

Authors:

Callie E Hood, Jonathan J Fortney, Michael R Line, Emily C Martin, Caroline V Morley, Jayne L Birkby, Zafar Rustamkulov, Roxana E Lupu, Richard S Freedman

Abstract:

Observations to characterize planets larger than Earth but smaller than Neptune have led to largely inconclusive interpretations at low spectral resolution due to hazes or clouds that obscure molecular features in their spectra. However, here we show that high-resolution spectroscopy (R ~ 25,000–100,000) enables one to probe the regions in these atmospheres above the clouds where the cores of the strongest spectral lines are formed. We present models of transmission spectra for a suite of GJ 1214b–like planets with thick photochemical hazes covering 1–5 μm at a range of resolutions relevant to current and future ground-based spectrographs. Furthermore, we compare the utility of the cross-correlation function that is typically used with a more formal likelihood-based approach, finding that only the likelihood-based method is sensitive to the presence of haze opacity. We calculate the signal-to-noise ratio (S/N) of these spectra, including telluric contamination, Required to robustly detect a host of molecules such as CO, CO2, H2O, and CH4 and photochemical products like HCN as a function of wavelength range and spectral resolution. Spectra in the M band require the lowest S/Nres to detect multiple molecules simultaneously. CH4 is only observable for the coolest models (T eff = 412 K) and only in the L band. We quantitatively assess how these requirements compare to what is achievable with current and future instruments, demonstrating that characterization of small cool worlds with ground-based high-resolution spectroscopy is well within reach.