What goes on inside the Mars north polar vortex?
(2025)
Authors:
Kevin Olsen, Bethan Gregory, Franck Montmessin, Lucio Baggio, Franck Lefèvre, Oleg Korablev, Alexander Trokhimovsky, Anna Fedorova, Denis Belyaev, Juan Alday, Armin Kleinböhl
Abstract:
Mars has an axial tilt of 25.2°, comparable to that on Earth of 23.4°. This gives rise to very similar seasons, and even leads to our definition of Martian time, aligning the solar longitudes (Ls) such that Ls 0° and 180° occur at the equinoxes. In the northern hemisphere, between the equinoxes, the north polar region experiences polar days without darkness in spring and summer, and days of total darkness in the fall and winter. The dark polar winters give rise to a polar vortex that encircles the polar region and encircles an atmosphere of very cold and dry air bound within (1-3).The Atmospheric Chemistry Suite (ACS) mid-infrared channel (MIR) on the ExoMars Trace Gas Orbiter (TGO; 4) operates in solar occultation mode in which the Sun is used as a light source when the atmosphere lies between the Sun and TGO. The tangent point locations of ACS MIR observation necessarily lie on the solar terminator on Mars. At the poles when either polar night or polar day are experienced, there is no terminator, and solar occultations are restricted to outside such a region. The latitudinal distribution of ACS MIR solar occultations during the north polar fall and winter over four Mars years (MYs) is shown in Fig. 1. The furthest northern extent of observations occurs at the equinoxes, and falling northern boundary is seen between, as the north pole points further away from the Sun (similarly in the south, where it is polar day).While direct observations of the north polar vortex are forbidden with solar occultations, the polar vortex is not perfectly circular (1-3) and occasionally, descends into the illuminated region where we are making observations. The characteristic signs that we are sampling the polar vortex are a sudden drop in temperature below 20 km, the almost complete reduction in water vapour volume mixing ratio (VMR) and an enhancement in ozone VMR, the latter of which is extremely rare (5).To measure the extent of the polar vortex, we use temperature measurements from the Mars Climate Sounder (MCS; 6, 7) on Mars Reconnaissance Orbiter (MRO). We define the polar vortex as the average temperature over 10-20 km being within a boundary of 170 K (30). We introduce a novel technique to determine this boundary during a 1° Ls period using an alpha hull. We show that we can accurately measure the area of the polar vortex and achieve similar results to (3). The impact of the southern summer and dust activity is clearly visible in the time series of the northern polar vortex extent, leading to maxima occurring at the equinoxes, and shrinking toward perihelion. The impact of global dust storms and the late season dust storms are also pronounced.We will show the vertical structure of water vapour and ozone VMRs inside and outside the north polar vortex, the results of a search for polar vortex temperatures from the near-infrared channel (NIR) of ACS (along the dark blue dots in Fig. 1), and show whether these results agree with the polar vortex extent measurements using MCS. Figure 1: The latitudes of ACS MIR solar occultation as a function of time (solar longitude Ls) during northern fall (Ls 180-270°) and winter (Ls 270-360°). Data from Mars years (MYs) 34-37 are indicated with colours. The region of interest in searching for polar vortex excursions is highlighted in blue.References:(1) Streeter, P. M. et al. J. Geophys. Res. 126, e2020JE006774 (2021).(2) Streeter, P. M., Lewis, S. R., Patel, M. R., Holmes, J. A., & Rajendran, K. Icarus 409, 115864 (2024).(3) Alsaeed, N.R., Hayne, P. O. & Concepcion, V. J. Geophys. Res. 129, e2024JE008397 (2024).(4) Korablev, O. et al. Space Sci. Rev. 214, 7 (2018).(5) Olsen, K. S., et al. J. Geophys. Res. 127, e2022JE007213 (2022).(6) Kleinböhl, A., et al. J. Geophys. Res., 114, E10006 (2009).(7) Kleinböhl, A., Friedson, A. J., & Schofield, J. T. J. Quant. Spectrosc. Radiat. Transfer. 187, 511-522 (2017).