Redshift tomography of the kinematic matter dipole
Physical Review D American Physical Society (APS) 111:12 (2025) 123547
Abstract:
The dipole anisotropy induced by our peculiar motion in the sky distribution of cosmologically distant sources is an important consistency test of the standard Friedmann-Lemaître-Robertson-Walker cosmology. In this work, we formalize how to compute the kinematic matter dipole in redshift bins. Apart from the usual terms arising from angular aberration and flux boosting, there is a contribution from the boosting of the redshifts that becomes important when considering a sample selected on observed redshift, leading to nonvanishing correction terms. We discuss examples and provide expressions to incorporate arbitrary redshift selection functions. We also discuss the effect of redshift measurement uncertainties in this context, in particular in upcoming surveys for which we provide estimates of the correction terms. Depending on the shape of a sample’s redshift distribution and on the applied redshift cuts, the correction terms can become substantial, even to the degree that the direction of the dipole is reversed. Lastly, we discuss how cuts on variables correlated with observed redshift, such as color, can induce additional correction terms. Published by the American Physical Society 2025HI Intensity Mapping with the MIGHTEE Survey: First Results of the H i Power Spectrum
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf975
A Multi-wavelength Characterization of the 2023 Outburst of MAXI J1807+132: Manifestations of Disk Instability and Jet Emission
(2025)
A Persistent Disk Wind and Variable Jet Outflow in the Neutron-star Low-mass X-Ray Binary GX 13+1
The Astrophysical Journal American Astronomical Society 986:1 (2025) 41