Thermal Modelling of the Flyby of Binary Main Belt Asteroid (152830) Dinkinesh by NASA’s Lucy Mission
(2025)
Authors:
Duncan Lyster, Carly Howett, John Spencer, Joshua Emery, Benjamin Byron, Philip Christensen, Victoria Hamilton, The Lucy Team
Abstract:
Introduction: The Lucy mission's first asteroid flyby provided a unique and unexpected opportunity to study a binary asteroid system up close. Originally expected to encounter a single target, Dinkinesh, the discovery of its small, tidally locked moon, Selam, introduced additional opportunity and complexity to the interpreting flyby observations [1]. We present thermal modelling of the binary system, quantifying how the presence of Selam influenced radiance measurements and indicating its possible impact on thermal inertia estimates. Thermal inertia (TI) offers insight into surface properties such as grain size and regolith structure. Determining the TI of Dinkinesh adds to our understanding of small S-type asteroids and enables comparison within a binary, potentially revealing differences driven by tidal effects or surface evolution.Methods: We modelled the flyby geometry and instrument measurements using the new TESBY (Thermal Emissions Spectrometer flyBY) module of TEMPEST (the Thermophysical Equilibrium Model for Planetary Environment Surface Temperatures) [2] to simulate the thermal radiance of both bodies and assess their combined effect on interpretation of data from the Lucy Thermal Emission Spectrometer (L’TES) instrument [3].The Thermal Model: Dinkinesh and its satellite, Selam, were modelled in TEMPEST. A stereo-photogrammetric shape model is available for the primary target – Dinkinesh [4], with ~2 m lateral and ~0.5 m vertical resolution, covering ~60% of the surface. This shape model was downsampled to a dimensionally accurate model with 1266 facets with a resolution of ~35 m. A sphere of representative diameter (230 m [1]) was used for the satellite Selam.Figure 1: TESBY visualization of flyby. Global view of the flyby trajectory (left), and the FOV of the instrument (centre), with corresponding L’LORRI image for comparison [1] taken 0.54 minutes before closest approach (right). Input is the TEMPEST [5] result for the shape model of Dinkinesh, and representative diameter sphere for Selam. Parameters used: solar distance = 2.19 AU, rotation periods = 3.74 hours (Dinkinesh) and 52.7 hours (Selam) [1] thermal inertia (provisional) = 40 J m-2 s-1/2 K-1, geometric albedo = 0.27Flyby geometry: Building on the TEMPEST framework, the TESBY module is given the geometry information for the flyby and the thermal data from TEMPEST. Based on the 7.3 mrad Field-of-View (FOV) of the L’TES instrument [3] TESBY produces simulated radiance measurements by computing a weighted sum of blackbody curves from each visible facet, based on its temperature, projected area, and emission angle. Matching these modelled radiances to the instrument data allows us to fit for the thermal inertia of the asteroid. A complicating factor in this study is that the sensitivity of L’TES is not uniform across its FOV, including this effect in the model is the subject of ongoing work.Figure 2: Preliminary modelled radiance results (blue line) compared to L’TES observation (red) using the same model settings as Fig. 1. Scaled radiances (dotted line) are also provided (see main text for more information).Results: An example of the currently predicted model radiance is given by Figure 2. As it shows, there is a notable offset between the predicted and observed radiances. Accounting for the position of the targets in the L’TES FOV is expected to resolve the observed discrepancy in absolute radiance levels. However, as the scaled model shows, the predicted radiances are able to capture the shape of the L’TES radiance.We find that due to the slower rotation rate of Selam, the maximum surface temperatures on the satellite can be as much as 25 K higher than those on Dinkinesh (Fig. 1), meaning that despite the small size (lobe diameter of only 230 m, compared with 790 m for Dinkinesh [1]), the contribution to measured radiance is significant. This effect is highlighted by investigation of the integrated radiances of the targets throughout the flyby (Fig. 3), where the entry and exit of Selam within the FOV is visible, as well as the dip in integrated radiance while Selam is partially eclipsed by Dinkinesh. Our results demonstrate the importance of considering the full system in flyby analysis, informing techniques for similar encounters in the future. This work highlights how the thermal signature of even a small secondary body can significantly impact observations, shaping our understanding of asteroid surface properties and thermal environments.Continued analysis will focus on the use of TEMPEST/TESBY to constrain the thermal inertia of this binary asteroid from L’TES flyby observations. Figure 3: Variation in integrated wavelength for Dinkinesh (target, blue), Selam (satellite, red) and combined effect (green). Radiances were integrated over the 200–1500 cm⁻¹ spectral range. The results show that despite its small size, Selam makes a significant difference to the spectral radiance, particularly at shorter wavelengths. The dip in combined spectral radiance at observations 3315-3320 is due to Selam being eclipsed by Dinkinesh.The thermal model code is open source and available at: github.com/duncanLyster/TEMPEST/Acknowledgement: This work was made possible by support from the UK Science and Technology Facilities Council. References: [1] Levison, H.F., Marchi, S., Noll, K.S. et al. A contact binary satellite of the asteroid (152830) Dinkinesh. Nature 629, 1015–1020 (2024).[2] Lyster, D., Howett, C., & Penn, J. (2024). Predicting surface temperatures on airless bodies: An open-source Python tool. EPSC Abstracts, 18, EPSC2024-1121.[3] Christensen, P. R., et al. The Lucy Thermal Emission Spectrometer (L’TES) Instrument, Space Sci. Rev. (2023)[4] Preusker, F. et al. (2024). Shape Model of Asteroid (152830) Dinkinesh from Photogrammetric Analysis of Lucy’s Frame Camera L’LORRI. 55th Lunar and Planetary Science Conference, Abstract #1903.[5] Lyster, D., Howett, C., & Penn, J. (2025). TEMPEST: A Modular Thermophysical Model for Airless Bodies with Support for Surface Roughness and Non-Periodic Heating. Submitted to EPSC Abstracts, 2025