Development of 230 GHz finline SIS mixers for next-generation large array receivers and HARP instrument upgrade
Proceedings Volume 13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII Society of Photo-optical Instrumentation Engineers (2024)
Abstract:
In pursuit of advancing large array receiver capabilities and enhancing the 16-element Heterodyne Array Receiver Program (HARP) instrument on the James Clerk Maxwell Telescope (JCMT), we have successfully fabricated 230 GHz finline superconductor-insulator-superconductor (SIS) mixers. These mixers are critical for assessing the potential and prospective for the HARP instrument’s upgrade. Unlike the existing HARP’s mixer, we replace the probe antenna with an end-fire unilateral finline as the waveguide to planar circuit transition. This mixer design is expected to operate from about 160–260 GHz (approximately 47% bandwidth), and the mixer chips’ current-voltage (I-V) curves have been characterized, showing promising results with a quality factor (Rsg/Rn) exceeding 9.3. Evaluation of the double-sideband (DSB) receiver noise temperature (Trx) is currently underway. Once successfully characterised, our immediate aim is to scale the mixer to operate at HARP’s frequency range near 345 GHz to achieve similar broad RF bandwidth performance. Ongoing simulations are currently being conducted for the design of the 345 GHz finline mixer. This work marks a crucial step toward enhancing HARP receiver performance with better sensitivity and wider Intermediate Frequency (IF) bandwidth, enabling higher-frequency observations, and expanding the scientific potential of the JCMT and its collaborative partners.Balanced travelling-wave parametric amplifiers for practical applications
Physica Scripta IOP Publishing 99:6 (2024) 065046
Abstract:
The development of superconducting travelling-wave parametric amplifiers (TWPAs) over the past decade has highlighted their potential as low-noise amplifiers for use in fundamental physics experiments and industrial applications. However, practical challenges, including signal-idler contamination, complex pump injection and cancellation, impedance mismatch, and the reciprocal nature of the device, have made it challenging to deploy TWPAs in real-world applications. In this paper, we introduce an innovative solution to these issues through phase-controlled balanced-TWPA architectures. These architectures involve placing two TWPAs in parallel between a pair of broadband couplers. By carefully controlling the phases of the tones propagating along the TWPAs, we can effectively separate the signal and idler tones, as well as the pump(s), using a straightforward injection and cancellation mechanism. The balanced-TWPA architecture offers versatility and flexibility, as it can be reconfigured either intrinsically or externally to suit different application needs. In this manuscript, we provide a comprehensive discussion of the working principles of the balanced-TWPA, including various configurations designed to meet diverse application requirements. We also present the expected gain-bandwidth products in comparison to traditional TWPAs and conduct tolerance analysis to demonstrate the feasibility and advantages of the balanced-TWPA architecture. By addressing the practical challenges associated with TWPAs, the balanced-TWPA architecture represents a promising advancement in the field, offering a more practical and adaptable solution for a wide range of applications.Modeling and Testing Superconducting Artificial CPW Lines Suitable for Parametric Amplification
IEEE Transactions on Applied Superconductivity Institute of Electrical and Electronics Engineers (IEEE) 34:6 (2024) 1-8
Investigating the effects of sum-frequency conversions and surface impedance uniformity in traveling wave superconducting parametric amplifiers
Journal of Applied Physics AIP Publishing 135:12 (2024) 124402
Abstract:
Traveling wave parametric amplifiers (TWPAs) offer the most promising solution for high gain, broadband, and quantum noise limited amplification at microwave frequencies. Experimental realization of TWPAs has proved challenging with often major discrepancies between the theoretically predicted and the measured gain performance of the devices. Here, we extend the conventional modeling techniques to account for spatial variation in the surface impedance of the thin film and the parametric sum-frequency conversions effect, which subsequently results in accurate reproduction of experimental device behavior. We further show that such an analysis may be critical to ensure fabricated TWPAs can operate as designed.Exploring the limits of the tunnel junction fabrication technique for Josephson junctions TWPA and the preliminary characterisation results
32nd International Symposium on Space Terahertz Technology (ISSTT 2022) International Symposium on Space Terahertz Technology (2024) 120-123